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Previously . . .
• Normal logic programs allow for “negation” in queries (clause bodies).• The negation as failure rule treats negated atoms ∼A in queries byasking the query A in a subsidiary tree and inverting the answer.• A proof theory for normal logic programs is given by SLDNF resolution.• Care must be taken not to let non-ground negative literals get selected.

zero(0) ←
positive(x) ← ∼zero(x)

positive( y)

∼zero( y)
{x/y} zero( y)

□

{ y/0}

success
failure

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 2 of 33 Computational
Logic ∴ Group



Previously . . .
• Normal logic programs allow for “negation” in queries (clause bodies).• The negation as failure rule treats negated atoms ∼A in queries byasking the query A in a subsidiary tree and inverting the answer.• A proof theory for normal logic programs is given by SLDNF resolution.• Care must be taken not to let non-ground negative literals get selected.

zero(0) ←
positive(x) ← ∼zero(x)

∃y(positive( y))

∃y(∼zero( y))
{x/y} ∃y(zero( y))

□

{ y/0}

success
failure

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 2 of 33 Computational
Logic ∴ Group



Overview

First-Order Formulas and Logical Truth

Completion of Programs

Soundness and Restricted Completeness of SLDNF Resolution

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 3 of 33 Computational
Logic ∴ Group



First-Order Formulas and Logical Truth
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First-Order Formulas
Definition
Let Π and F be ranked alphabets of predicate symbols and function symbols,respectively, and V be a set of variables.
The set of (first-order) formulas (over Π, F , and V ) is inductively defined asfollows:
• if atom A ∈ TBΠ,F ,V , then A is a formula;
• if G1 and G2 are formulas, then ¬G1, G1 ∧G2 (also written G1,G2), G1 ∨G2,

G1 ← G2, and G1 ↔ G2 are formulas;
• if G is a formula and x ∈ V , then ∀xG and ∃xG are formulas.
Note
Whenever we interpret normal queries/clauses as first-order formulas, we(for now) take ∼ to be ¬.
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Extended Notion of Logical Truth (1)
Definition
Let G be a formula, I be an interpretation with domain D, and σ : V → D be astate.Formula G is true in I under σ, written I |=σ G, based on the structure of G:
• I |=σ p(t1, . . . , tn) :⇐⇒ (σ(t1), . . . ,σ(tn)) ∈ pI• I |=σ ¬G :⇐⇒ I ̸|=σ G

• I |=σ G1 ∧G2 :⇐⇒ I |=σ G1 and I |=σ G2• I |=σ G1 ∨G2 :⇐⇒ I |=σ G1 or I |=σ G2• I |=σ G1 ← G2 :⇐⇒ if I |=σ G2 then I |=σ G1• I |=σ G1 ↔ G2 :⇐⇒ I |=σ G1 iff I |=σ G2• I |=σ ∀x G :⇐⇒ for every d ∈ D: I |=σ′ G

• I |=σ ∃x G :⇐⇒ for some d ∈ D: I |=σ′ G

where σ′ : V → D with σ′(x) = d and σ′( y) = σ( y) for each y ∈ V \ {x}.
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Extended Notion of Logical Truth (2)

Definition
Let G be a formula, S and T be sets of formulas, and I be an interpretation.Furthermore, let x1, . . . , xk be the variables occurring in G.• ∀x1, . . . ,∀xkG is the universal closure of G (abbreviated ∀G).
• I |= ∀G :⇐⇒ I |=σ G for every state σ
• G is true in I (or: I is a model of G), written: I |= G :⇐⇒ I |= ∀G
• I is a model of S, written: I |= S :⇐⇒ I |= G for every G ∈ S

• T is a semantic (or: logical) consequence of S, written: S |= T:⇐⇒ every model of S is a model of T
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Negative Consequences of Logic Programs (1)
Consider program Pmem:

member(x, [ x|y]) ←
member(x, [ y|z]) ← member(x, z)

Then, e.g. Pmem |= member(a, [a,b]) and Pmem ̸|= member(a, [ ]).

But also Pmem ̸|= ¬member(a, [ ]), since HB{member},{|,[ ],a} |=Pmem and
HB{member},{|,[ ],a} ̸|=¬member(a, [ ]).
Nevertheless the SLDNF tree of Pmem ∪ {∼member(a, [ ])} is successful:

∼member(a, [ ])
member(a, [ ])

failure
success
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Negative Consequences of Logic Programs (2)
Observation
For every normal logic program P over vocabulary Π, F , the Herbrand base
HBΠ,F is a model of P. (All implications are satisfied.)
Corollary
There is no negative ground literal ¬A that is a logical consequence of P.
But: The SLDNF tree of P∪ {∼A}may be successful!

⇝ Taking ∼ to be ¬, SLDNF resolution is not sound w.r.t. |=.
Solution:

Avoid Herbrand models that are “too large”.
⇝ Formalise “the information in the program is all there is”.
⇝ Strengthen P to its completion comp(P).
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Completion of Programs
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Completed Definitions (Example 1)

P:
happy ← sun,holidays
happy ← snow,holidays
snow ← cold,precipitation
cold ← winter

precipitation ← holidays

winter ←
holidays ←

comp(P):
happy ↔ (sun∧ holidays)∨ (snow ∧ holidays)
snow ↔ cold ∧ precipitation
cold ↔ winter

precipitation ↔ holidays

winter ↔ true

holidays ↔ true

sun ↔ false

Then, comp(P) |= happy, snow, cold,precipitation,winter,holidays,¬sun.
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Completed Definitions (Example 2)

P:
member(x, [ x|y]) ←
member(x, [ y|z]) ← member(x, z)
disjoint([ ], x) ←
disjoint([ x|y], z) ← ∼member(x, z), disjoint( y, z)

comp(P):
∀x1, x2(

member(x1, x2) ↔ (∃x, y (x1 = x ∧ x2 = [ x|y]) ∨
∃x, y, z (x1 = x ∧ x2 = [ y|z]∧member(x, z))))

∀x1, x2(
disjoint(x1, x2) ↔ (∃x (x1 = [ ]∧ x2 = x) ∨

∃x, y, z (x1 = [ x|y]∧ x2 = z ∧
¬member(x, z)∧ disjoint( y, z))))

plus standard equality and inequality axioms
Then, e.g. comp(P) |= member(a, [a,b]),¬member(a, [ ]),¬disjoint([a], [a]).
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Completion (1)
Definition (Clark, 1978)
Let P be a normal logic program. The completion of P (denoted by comp(P))is the set of formulas constructed from P by the following 6 steps:
1. Associate with every n-ary predicate symbol p a sequence ofpairwise distinct variables x1, . . . , xn that do not occur in P.

2. Transform each clause c = p(t1, . . . , tn) ← B1, . . . ,Bk into
p(x1, . . . , xn) ← x1 = t1 ∧ . . . ∧ xn = tn ∧ B1 ∧ . . . ∧ BkAny empty conjunction (for n = 0 or k = 0) is replaced by true.

3. Transform each resulting formula p(x1, . . . , xn) ← G into
p(x1, . . . , xn) ← ∃z⃗ Gwhere z⃗ is a sequence of the elements of Var(c).
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Completion (2)
Definition (Clark, 1978, continued)

4.

For every n-ary predicate symbol p, let
p(x1, . . . , xn) ← ∃z⃗1 G1, . . . , p(x1, . . . , xn) ← ∃z⃗m Gm

be all implications obtained in Step 3 (m ≥ 0).
If m > 0, then replace these by the formula

∀x1, . . . , xn(
p(x1, . . . , xn) ↔ (∃z⃗1 G1 ∨ . . . ∨ ∃z⃗m Gm)

)
If m = 0, then add the formula

∀x1, . . . , xn(p(x1, . . . , xn) ↔ false)
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Completion (3)
Definition (Clark, 1978, continued)

5.
Add the standard axioms of equality:

∀ [ x = x ]
∀ [ x = y → y = x ]
∀ [ x = y ∧ y = z → x = z ]
∀ [ xi = y → f (x1, . . . , xi, . . . , xn) = f (x1, . . . , y, . . . , xn) ]
∀ [ xi = y → (p(x1, . . . , xi, . . . , xn) ↔ p(x1, . . . , y, . . . , xn)) ]

6.
Add the standard axioms of inequality:

∀ [ x1 ̸= y1 ∨ . . . ∨ xn ̸= yn → f (x1, . . . , xn) ̸= f ( y1, . . . , yn) ]
∀ [ f (x1, . . . , xm) ̸= g( y1, . . . , yn) ] (whenever f ̸= g)
∀ [ x ̸= t ] (whenever x is a proper subterm of t)

Steps 5. and 6. ensure that “=” must be interpreted as equality.
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Quiz: Completion

Quiz
Consider the following logic program P: . . .
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Soundness and Restricted Completeness of
SLDNF Resolution
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Soundness of SLDNF Resolution
Definition
Let P be a normal logic program, Q be a normal query, and θ be asubstitution.
• θ|Var(Q) is a correct answer substitution of Q :⇐⇒ comp(P) |= Qθ

• Qθ is a correct instance of Q :⇐⇒ comp(P) |= Qθ

Theorem (Lloyd, 1987)
If there exists a successful SLDNF derivation of P∪ {Q} with computedanswer substitution θ, then comp(P) |= Qθ.
Corollary
If there exists a successful SLDNF derivation of P∪ {Q}, then comp(P) |= ∃Q.
We assume here that ∼ in queries has been replaced by ¬ for entailment.
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Incompleteness (1): Inconsistency

P : p ← ∼p

By definition, it follows that comp(P) ⊇ {p↔¬p} ≡ { false}.
Hence, comp(P) |= p and comp(P) |= ¬p because I ̸|= comp(P) for everyinterpretation I, i.e. comp(P) has no model (comp(P) is unsatisfiable).
But there is neither a successful SLDNF derivation of P∪ {p} nor of P∪ {∼p}.
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Incompleteness (2): Non-Strictness

P : p ← q

p ← ∼q
q ← q

Thus comp(P) ⊇ {p↔ (q∨¬q), q↔q} ≡ {p↔ true}.
Hence, comp(P) |= p.
But there is no successful SLDNF derivation of P∪ {p}.
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Incompleteness (3): Floundering

P : p(x) ← ∼q(x)

Thus comp(P) ⊇ {∀x1(p(x1)↔∃x(x1 = x ∧¬q(x))), ∀x1(q(x1)↔ false)}
≡ {∀x1(p(x1)↔ true), ∀x1(q(x1)↔ false)}.

Hence, comp(P) |= ∀x1 p(x1).
But there is no successful SLDNF derivation of P∪ {p(x1)}.
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Incompleteness (4): Unfairness

P : r ← p,q
p ← p

Thus comp(P) ⊇ {r↔ (p∧ q), p↔p, q↔ false}
≡ {r↔ false, q↔ false}.

Hence, comp(P) |= ¬r.
But there is no successful SLDNF derivation of P∪ {∼r} w.r.t. leftmostselection rule.
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Dependency Graphs

Definition
The dependency graph DP of a normal logic program P is a directed graphwith labeled edges, where
• the nodes are the predicate symbols of P
• the edges are either labeled by + (positive edge) or by – (negative edge)
• there is an edge q +−→p in DP:⇐⇒ P contains a clause p(s1, . . . , sm) ← L⃗,q(t1, . . . , tn), N⃗
• there is an edge q –−→p in DP:⇐⇒ P contains a clause p(s1, . . . , sm) ← L⃗,∼q(t1, . . . , tn), N⃗
Note that the direction of the edges is sometimes reversed in other texts.
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Strict, Hierarchical, Stratified Programs

Definition
Let P be a normal program with dependency graph DP,let p,q be predicate symbols, and Q be a normal query.
• p depends evenly (resp. oddly ) on q:⇐⇒ there is a path from q to p in DP withan even (resp. odd) number of negative edges
• P is strict w.r.t. Q:⇐⇒ no predicate symbol occurring in Q depends both evenly and oddlyon a predicate symbol in the head of a clause in P
• P is hierarchical :⇐⇒ no cycle exists in DP• P is stratified :⇐⇒ no cycle with a negative edge exists in DP
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“Completeness” of SLDNF Resolution (1)
Theorem (Lloyd, 1987)
Let P be a hierarchical and allowed program and Q be an allowed query.
If comp(P) |= Qθ for some θ such that Qθ is ground, then there exists asuccessful SLDNF derivation of P∪ {Q} with cas θ.
Note
The theorem does not hold if an arbitrary selection rule is fixed in advance.The used selection rule has to be safe.
Recall:
• A query is allowed iff every one of its variables occurs in some of itspositive atoms.
• A selection rule is safe iff it never selects a non-ground negative literal.
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“Completeness” of SLDNF Resolution (2)

Theorem (Cavedon and Lloyd, 1989)
Let P be a stratified and allowed program and Q be an allowed query, suchthat P is strict w.r.t. Q.
If comp(P) |= Qθ for some θ such that Qθ is ground, then there exists asuccessful SLDNF derivation of P∪ {Q} with cas θ.
Note
The theorem does not hold if an arbitrary selection rule is fixed in advance.The used selection rule has to be safe and fair.
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Fair Selection Rules
Definition
An (SLDNF) selection rule R is fair:⇐⇒ for every SLDNF tree F via R and for every branch ξ in F:
• either ξ is failed,
• or for every literal L occurring in a query of ξ, (some further instantiatedversion of) L is selected within a finite number of derivation steps.
Example
• The selection rule “select leftmost literal” is unfair.
• The selection rule “select leftmost literal to the right of the literalsintroduced at the previous derivation step, if it exists, otherwise selectleftmost literal” is fair.
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Specifics of PROLOG

• leftmost selection rule: LDNF -resolution, LDNF -resolvent, LDNF -tree, . . .
• non-ground negative literals are selected
• a program is a sequence of clauses
• unification without occur check
• depth-first search, backtracking
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Extended Prolog Trees

Definition
Let P be a normal program and Q0 be a normal query.
The Extended Prolog Tree for P∪ {Q0} is a forest of finitely branching,ordered trees of queries, possibly marked with “success” or “failure”,produced as follows:
• start with forest ({TQ0}, TQ0 , subs), where TQ0 contains the single node Q0and subs(Q0) is undefined;• repeatedly apply to current forest F = (T, T , subs) and leftmost unmarkedleaf Q in T1, where T1 ∈ T is the leftmost, bottommost (most nestedsubsidiary) tree with an unmarked leaf, the operation expand(F,Q).
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Operation Expand
Definition
The operation expand(F,Q) is defined as follows:
• if Q = □, then

1. mark Q with “success”2. if T1 ̸= T , then remove from T1 all edges to the right of the branch that endswith Q
• if Q has no LDNF-resolvents, then mark Q with “failure”
• else let L be the leftmost literal in Q:

– L is positive: add for each clause that is applicable to L an LDNF-resolvent asdescendant of Q (respecting the order of the clauses in the program)– L = ∼A is negative (not necessarily ground):
∗ if subs(Q) is undefined, then add a new tree T ′ = A and set subs(Q) to T ′;
∗ if subs(Q) is defined and successful, then mark Q with “failure”;
∗ if subs(Q) is defined and finitely failed, then add in T1 the LDNF-resolvent of Q asthe only descendant of Q.
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Floundering is Ignored (1)

even(0).
even(X) :- \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

no

| ?- even(s(s(0))).

yes

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 31 of 33 Computational
Logic ∴ Group



Floundering is Ignored (2)

num(0).
num(s(X)) :- num(X).
even(X) :- num(X), \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;

X = s(s(0)) ;

X = s(s(s(s(0)))) ;

...
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Conclusion
Summary
• For every normal logic program P, its completion comp(P) replaces thelogical implications of clauses by equivalences.
• SLDNF resolution w.r.t. P is sound for entailment w.r.t. comp(P).
• SLDNF resolution is only complete (for entailment w.r.t. comp(P)) forcertain combinations of classes of programs, queries, and selection rules.
• For a normal program P, its dependency graph DP explicitly showspositive and negative dependencies between predicate symbols.
• A normal program P is stratified iff DP has no cycle with a negative edge.
Suggested action points:
• Construct the completion of the programs on slides 31 and 32.
• Find a program that shows unfairness of the leftmost selection rule.

Soundness and Restricted Completeness of SLDNF Resolution (Lecture 8)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2022/23 Slide 33 of 33 Computational
Logic ∴ Group


	First-Order Formulas and Logical Truth
	Completion of Programs
	Soundness and Restricted Completeness of SLDNF Resolution

