Prefix-vocabulary classes
[H) (Pl: p2) . °)> (,fl’fz’ e )](:)
e [lisawordover {3V, 3 V*}, describing set of quantifier prefixes

® D, fm < windicate how many relation and function symbols of

arity 1 may occur

® presence or absence of = indicates whether the formulae may

contain equality

Example: [F*V3*, (w, 1), all]-

sentences Jx; ... 3x,,Vydz, ... 3z, where ¢ is quantifier-free and

— contains at most one binary predicate, and no predicates of arity > 3,
— may contain any number of monadic predicates,

— may contain any number of function symbols of any arity,

— may contain equality.
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The complete classification: undecidable cases

A: Pure predicate logic (without functions, without =)

(1) VIV, (w, 1), (0)]  (Kahr 1962)

(2) V3, (w, 1), (0)] (Suranyi 1959)

(3) vV 4, (0, 1), (0)] (Kalmar-Suranyi 1950)
(4) VV*, (0,1), (0)] (Denton 1963)

(5) VavV3*, (0, 1), (0)] (Gurevich 1966)

(6) V3% (0,1),(0)]  (Kalmar-Surdnyi 1947)
(7) V37V, (0, 1), (0)] (Kostyrko-Genenz 1964)
(8) V3V, (0, 1), (0)] (Suranyi 1959)

(9) 3*v°3,(0,1), (0)]  (Surdnyi 1959)
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The complete classification: undecidable cases

B: Classes with functions or equality

(10) 'V, (0), (2)]- (Gurevich 1976)
(11) VY, (0), (0, 1)]= (Gurevich 1976)
(12) 2, (0, 1), (1)] (Gurevich 1969)
(13) V2, (1), (0, 1)] (Gurevich 1969)
(14) V23, (w, 1), (0)]  (Goldfarb 1984)
(15) 3*v23,(0, 1), (0)].  (Goldfarb 1984)
(16) V23 (0, 1), (0)]-  (Goldfarb 1984)
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The complete classification: decidable cases

(Exclude the trivial classes: finite prefix and finite relational vocabulary)

A: Classes with the finite model property

(1) IV, all, (0)](: (Bernays, Schonfinkel 1928)

(2) F*V23* all, (0)] (Godel 1932, Kalmar 1933, Schiitte 1934)

(3) il (@) ()] (ILob 1967, Gurevich 1969) ’[f:’"%/, X

(4) 3*V3*, all, all]  (Gurevich 1973) of “gre
RO

(5) 3%, all, all] - (Gurevich 1976)

B: Classes with infinity axioms

(6) lall, (w), (1)]- (Rabin 1969)
(7) [3*V3*, all, (1)}=~ (Shelah 1977)
o o )
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Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 900000000 00
:

FO! WITH COUNTING, C!

C!: extension of FO! with counting quantifiers: 3=™, 32m, 3=
meaning that there exists at most, at least, exactly m elements
satisfying some property.

32125xT A 3720 French(x) A 37%6x German(x) A 3=%x Spanish(x)

SATISFIABLE



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 900000000 00
:

FO! WITH COUNTING, C!

C!: extension of FO! with counting quantifiers: 3=™, 32m, 3=
meaning that there exists at most, at least, exactly m elements
satisfying some property.

32129xT A 37°%x French(x) A 373 x German(x) A 3=%x Spanish(x) A
Vx (French(x) V German(x) V Spanish(x))
NOT SATISFIABLE



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 900000000 00
:

FO! WITH COUNTING, C!

Cl: extension of FO! with counting quantifiers: 3=™, 3=, 3=
meaning that there exists at most, at least, exactly m elements
satisfying some property.

32129xT A 37°%x French(x) A 373 x German(x) A 3=%x Spanish(x) A
Vx (French(x) V German(x) V Spanish(x))

NOT SATISFIABLE

37122xT A 37°% French(x) A 3736x German(x) A 373x Spanish(x) A
Vx (French(x) V German(x) V Spanish(x)) A

SATISFIABLE !



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 900000000 00
:

FO! WITH COUNTING, C!

Cl: extension of FO! with counting quantifiers: 3=™, 3=, 3=
meaning that there exists at most, at least, exactly m elements
satisfying some property.

32129xT A 37°%x French(x) A 373 x German(x) A 3=%x Spanish(x) A
Vx (French(x) V German(x) V Spanish(x))
NOT SATISFIABLE

37122xT A 37°% French(x) A 3736x German(x) A 373x Spanish(x) A
Vx (French(x) V German(x) V Spanish(x)) A
3=38x (French(x) A —=German(x)) A
3=18x (French(x) A Spanish(x)) A
3=2x (German(x) A Spanish(x)) A
3=10% (French(x) A German(x) A Spanish(x))
STILL SATISFIABLE ???



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 000000000 00
:

Lemma (Normal form for C?)

For every C! formula o we can compute in polynomial time a formula
¢’ of the form

m

¢ = \ FCxpi(x),
i=1
satisfiable over the same domains as ¢, where:
1<m< gl

each ; is quantifier free,

v

v

v

each < is any of the symbols <, > or =, and

v

the C; are either one or occur as a quantifier subscript in .

Proof: similarly to FO! we replace subformulas of the form
F<Cxx(x) with x(x)-quantifier-free, by new predicate symbols
and add appropriate definitions.



Introduction and Outline Background Fo! FO! with counting Conclusion

| 00000 0000 0000 00@000000 00
Theorem (FMP for C!)
Let ¢ be a formula in C. If y is satisfiable, then it is satisfiable over a
domain of size at most 2!#!, 22"

Proof UBRM'NG! ‘P i 3 ~ T
. L I ——
By the normal form Lemma we may assume that ¢ has the form

m /

m
pi= AF%0 A A\IPxy
i=1 j=1

Let 2 |= . Foralli (1 < i < m) select distinct elements
ai1,---,4ic; € A satisfying 0; in 2.

Let B={a; | 1 <i<m,1<k<C;},and let B be the
restriction of 2 to B. Then B = .

Corollary qo N N P

]

SAT(C!) is in NEXPTIME.



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 000@00000 00
: :

COMPLEXITY OE C!

Our aim is to prove

Theorem H
SAT(C') is NP-complete. f?,. (°) = SI Bi 23

We cannot improve the bound on the size of minimal models:
the formula 3="xPx has only models of exponential size with

respect to |¢|. P

1
Definition *194 (0~) = B(">A R ( kA )A GG;)
A 1-type of an element 2 in a model 2/ is the conjunction of all

literals satisfied by . 2= 3 8,R,Q § @B; R,76

Idea: with each normal form ¢ we associate a system of linear
inequalities £, describing constraints on the number of distinct
1-types realized in some model of ¢.
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00000 0000 0000 000080000 00
:

SYSTEMS OF INEQUALITIES - EXAMPLE

¢ 1= 37122xT A 370 French(x) AF=%x German(x) A 3=%°x Spanish(x) A
Vx (French(x) vV German(x) V Spanish(x)) A
3=38x (French(x) A =German(x)) A
3=18x (French(x) A Spanish(x)) A
3=2lx (German(x) A Spanish(x)) A
3=10x (French(x) A German(x) A Spanish(x))
Denote the 1-types over the signature French, German, Spanish

by ty, tr, tG, ts, trG, trs, tcs, trs (the letters in the subscript
indicate the positive subformulas of the type). £, contains:
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00000 0000 0000 0000@0000 00
:

SYSTEMS OF INEQUALITIES - EXAMPLE

¢ 1= 37122xT A 370 French(x) A3=%x German(x) A 3=%°x Spanish(x) A
Vx (French(x) vV German(x) V Spanish(x)) A
3=38x (French(x) A =German(x)) A
3=18x (French(x) A Spanish(x)) A
3=2lx (German(x) A Spanish(x)) A
3=10x (French(x) A German(x) A Spanish(x))

Denote the 1-types over the signature French, German, Spanish
by ty, tr, tG, ts, trG, trs, tcs, trs (the letters in the subscript
indicate the positive subformulas of the type). £, contains:

Xp + XF + XG + Xs + XFG + XFs + XGs + Xpgs = 122



Introduction and Outline Background Fo! FO! with counting Conclusion

00000 0000 0000 0000@0000 00
:

SYSTEMS OF INEQUALITIES - EXAMPLE

@ :=3712xT A AF=36x German(x) A 3=%x Spanish(x) A
Vx (French(x) vV German(x) V Spanish(x)) A

38y (French(x) A “German(x)) A

18x (French(x) A Spanish(x)) A

2lx (German(x) A Spanish(x)) A

3=10x (French(x) A German(x) A Spanish(x))

=
3
=

Denote the 1-types over the signature French, German, Spanish
by ty, tr, tG, ts, trG, trs, tcs, trs (the letters in the subscript
indicate the positive subformulas of the type). £, contains:

Xp + XF + XG + Xs + XFG + XFs + XGs + Xpgs = 122
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00000 0000 0000 0000@0000 00
:

SYSTEMS OF INEQUALITIES - EXAMPLE

@ :=T12xT A AF=36x German(x) A 3=%x Spanish(x) A
Vx (French(x) vV German(x) V Spanish(x)) A
3=38x (French(x) A =German(x)) A
3=18x (French(x) A Spanish(x)) A
3=2lx (German(x) A Spanish(x)) A
3=10x (French(x) A German(x) A Spanish(x))

Denote the 1-types over the signature French, German, Spanish
by ty, tr, tG, ts, trG, trs, tcs, trs (the letters in the subscript
indicate the positive subformulas of the type). £, contains:

Xp + XF + XG + Xs + XFG + XFs + XGs + Xpgs = 122

X@:O
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00000 0000 0000 0000@0000 00
:

SYSTEMS OF INEQUALITIES - EXAMPLE

—1‘22 AF=36x German(x) A 3=%x Spanish(x) A
'1 ?) (French( ) V German(x) V Spanish(x)) A
3= (French( ) A =German(x)) A

\ 3=18x (French(x) A Spanish(x)) A
73 x (German(x) A Spanish(x)) A
\‘Q\ 3= 10 x (French(x) A German(x) A Spanish(x))

Denote the 1-types over the signature French, German, Spanish
by ty, tr, tG, ts, trG, trs, tcs, trs (the letters in the subscript
indicate the positive subformulas of the type). £, contains:

Y=

Xp + XF + XG + Xs + XFG + XFs + XGs + Xpgs = 122

X@:O
Xp + Xps = 38



Introduction and Outline Background
00000 0000

Fo! FO! with counting
Q000 000008000

Conclusion
00

&, FOR OUR EXAMPLE

Xp +Xp + XG + Xs + XpG + XFs + XGs + XEGs

Lemma: £, has a non-negative integer solution iff ¢ has a

model.

XF + XFG + Xps + Xpgs = 50
xp =0

Xp + xps = 38

XG + XrG + XGs + Xrgs = 36

Xs + Xps + Xgs + Xpgs = 36

Xrs + Xpgs = 18

xGs + xpcs = 21

Xpgs = 10
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00000 0000 0000 000000800 00
:

SYSTEMS OF INEQUALITIES - FORMALIZED

m

pi=N\TCx0
i=1

Leto = {P1,...,P;}. A l-type (over o) is any of the formulas:
+PixAN...\NEPxx

Let 2 be a finite o-structure and 4, . . ., f; be an enumeration of
all 1-types, L = 2. We characterize 2 by the sequence of natural
numbers (a1, ...,ar) wherea; =| {a € A: A = t(a)} |.
The system &,, contains for each conjunct F%Cix ¢; the
inequality:

Ci1X1 + ...+ cipxp > G,

where ¢;; = 1 if the 1-type ¢, entails ¢; and ¢; ; = 0, otherwise.
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00000 0000 0000 000000080 00
:

COMPLEXITY OE C!

Lemma (Reduction property)
&, has a non-negative integer solution iff p has a model. Moreover,
every solution of £, characterizes some model of .
The problem integer programming is as follows:
» given: a system & of linear equations and inequalities
check whether £ has a solution over N.
Theorem (Borosh and Treybig 1976)
Integer programming is in NPTIME.

&, has m inequalities and L = 2/ variables. Recall m, < |¢|.

N\ 8 ‘ i Q= 7\3%% 0;
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00000 0000 0000 00000000e 00
: :

OPTIMAL COMPLEXITY FOR C!

¢ = N, PCix0; &, :minequalities, L = 2! variables.

Lemma (linear algebra)

If £, has ion over N, then &, has a solution over N with at
most n-zero entries.
Corollary -
omod \
sarchenp, TGO @)
Proof.
Let C =max{C;:1 <i <m}. If (ovq,..., ) is a solution of &£,

then sois (1, ..., L), where ; = min(q;, C).

The linear algebra Lemma allows one to first guess a
polynomial number of non-zero variables and write down the
system &£, only over these variables; since Integer Programming
is in NPTIME, solutions of such systems can be guessed and
verified in time bounded by a polynomial function of |¢|. O
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00000 0000 0000 000000000 o0
:

REDUCTION TO INTEGER PROGRAMMING
R (=< (om Proth
CtIR(=.y) an P

Idea: Depending on the logic: ot
identify (finitely many types of)Building blocks of a
potential model and connecting conditions for them,
describe them in a succinct way by a set of (in)equalities.

Advantages:
» Useful for solving simultaneously SAT and FINSAT.
We look for solutions over N (FINSAT) or over NU {co}
(SAT), e.g.
x+1=x
has a solution x = co

» Gives better (optimal) complexity bounds.

We will see more about this approach later in the course.
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