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Abstract. The tight upper bound on the state complexity of the reverse
of R-trivial and J -trivial regular languages of the state complexity n is
2n−1. The witness is ternary for R-trivial regular languages and (n− 1)-
ary for J -trivial regular languages. In this paper, we prove that the
bound can be met neither by a binary R-trivial regular language nor
by a J -trivial regular language over an (n − 2)-element alphabet. We
provide a characterization of tight bounds for R-trivial regular languages
depending on the state complexity of the language and the size of its
alphabet. We show the tight bound for J -trivial regular languages over
an (n− 2)-element alphabet and a few tight bounds for binary J -trivial
regular languages. The case of J -trivial regular languages over an (n−k)-
element alphabet, for 2 ≤ k ≤ n− 3, is open.

1 Introduction

Regular languages of simple forms play an important role in mathematics and
computer science. The reader is referred to, e.g., [1,6,12] for a few applications of
J -trivial (piecewise testable) languages. The aim of this paper is to investigate
the state complexity of the reverse of two such language classes, namely of R-
trivial and J -trivial regular languages.

For a regular language, the state complexity is the number of states of its
minimal automaton representation. The reverse of an automaton or of a language
is a classical operation whose state complexity is exponential in the worst case.
There exist binary witness languages of the state complexity n with the reverse
of the state complexity 2n, see [11,17]. This even holds true for union-free regular
languages defined by regular expressions without the union operation [8].

As mentioned above, we consider languages defined by Green’s equivalence
relations, namely R-trivial and J -trivial regular languages. Let M be a monoid
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and s and t be two elements of M . Green’s relations L, R, J , and H on M are
defined so that (s, t) ∈ L if and only if M · s = M · t, (s, t) ∈ R if and only if
s ·M = t ·M , (s, t) ∈ J if and only if M · s ·M = M · t ·M , and H = L ∩ R.
For ρ ∈ {L,R,J ,H}, M is ρ-trivial if (s, t) ∈ ρ implies s = t, for all s, t in M .
A language is ρ-trivial if its syntactic monoid is ρ-trivial. Note that H-trivial
regular languages coincide with star-free languages [10, Chapter 11] and that
L-trivial, R-trivial and J -trivial regular languages are all star-free. Moreover,
J -trivial regular languages are both L-trivial and R-trivial.

Equivalently, a regular language isR-trivial if and only if it is a finite union of
languages of the form Σ∗1a1Σ

∗
2a2Σ

∗
3 · · ·Σ∗kakΣ∗, where k ≥ 0, ai ∈ Σ, and Σi ⊆

Σ \ {ai}, or if and only if it is accepted by a partially ordered minimal DFA [3].
Similarly, a regular language is J -trivial (or piecewise testable) if and only if it is
a finite boolean combination of languages of the form Σ∗a1Σ

∗a2Σ
∗ . . . Σ∗akΣ

∗,
where k ≥ 0 and ai ∈ Σ, or if and only if the minimal DFAs for both the
language and the reverse of the language are partially ordered [13,14]. Other
automata representations of these languages can be found, e.g., in [7] and the
literature therein. Stern [15] suggested a polynomial algorithm of order O(n5)
in the number of states and transitions of the minimal DFA to decide whether
a regular language is J -trivial. Trahtman [16] recently improved this result to a
quadratic algorithm.

In [9], we have shown that the upper bound on the state complexity of the
reverse of R-trivial and J -trivial regular languages is 2n−1 for languages of
the state complexity n. We have also shown that this bound can be met by
a ternary R-trivial regular language and conjectured that an (n − 1)-element
alphabet is sufficient for J -trivial regular languages of the state complexity
n to meet the upper bound, which was later proved in [4]. In this paper, we
prove the optimality of the size of these alphabets. Namely, we prove that the
bound on the state complexity of the reverse can be met neither by a binary
R-trivial regular language (Lemma 2) nor by a J -trivial regular language over
an (n − 2)-element alphabet (Theorem 2). As a result, we provide a complete
characterization of tight upper bounds for R-trivial regular languages depending
on the state complexity of the language and the size of its alphabet (Theorem 1).
Finally, we prove a tight upper bound for J -trivial regular languages over (n−2)-
element alphabets (Theorem 3) and several tight bounds for binary J -trivial
regular languages (Table 1). The case of J -trivial regular languages over (n−k)-
element alphabets, for 2 ≤ k ≤ n− 3, is left open.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata and formal language theory.
The cardinality of a set A is denoted by |A|, and the powerset of A is denoted
by 2A. An alphabet is a finite nonempty set. The free monoid generated by an
alphabet Σ is denoted by Σ∗. A string over Σ is any element of Σ∗, and the
empty string is denoted by ε.
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A nondeterministic finite automaton (NFA) is a 5-tupleM = (Q,Σ, δ,Q0, F ),
where Q is the finite nonempty set of states, Σ is the input alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q

is the transition function that can be extended to the domain 2Q × Σ∗. The
language accepted by M is the set L(M) = {w ∈ Σ∗ | δ(Q0, w) ∩ F 6= ∅}. The
NFA M is deterministic (DFA) if |Q0| = 1 and |δ(q, a)| = 1 for every q in Q and
a in Σ. In this case we identify singleton sets with their elements and simply
write q instead of {q}. Moreover, the transition function δ is a total map from
Q×Σ to Q that can be extended to the domain Q×Σ∗. Two states of a DFA
are distinguishable if there exists a string w that is accepted from one of them
and rejected from the other; otherwise they are equivalent. A DFA is minimal if
all its states are reachable and pairwise distinguishable. A non-accepting state
d ∈ Q such that δ(d, a) = d, for all a in Σ, is called a dead state.

The state complexity of a regular language L, denoted by sc(L), is the number
of states in the minimal DFA accepting the language L.

The subset automaton of an NFA M = (Q,Σ, δ,Q0, F ) is the DFA M ′ =
(2Q, Σ, δ′, Q0, F

′) constructed by the standard subset construction.

Let M = (Q,Σ, δ,Q0, F ) be a DFA. The reachability relation � on the states
of M is defined by p � q if there exists a string w in Σ∗ such that δ(p, w) = q.
The DFA M is partially ordered if the reachability relation � is a partial order.
For two states p and q of M , we write p ≺ q if p � q and p 6= q. A state p is
maximal if there is no state q such that p ≺ q.

The reverse wR of a string w is defined by εR = ε and (va)R = avR, for v in
Σ∗ and a in Σ. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of a DFA M is the NFA MR obtained from M by reversing all tran-
sitions and swapping the role of initial and accepting states. The following result
says that there are no equivalent states in the subset automaton of the reverse
of a minimal DFA. We use this fact in the paper when proving the tightness of
upper bounds. By this fact, it is sufficient to show that the corresponding num-
ber of states is reachable in the subset automaton since the distinguishability
always holds.

Fact 1 ([2]). All states of the subset automaton corresponding to the reverse of
a minimal DFA are pairwise distinguishable. ut

In what follows we implicitly use the characterization that a regular language
is R-trivial if and only if it is accepted by a minimal partially ordered DFA and
that it is J -trivial if and only if both the language and its reverse are accepted
by minimal partially ordered DFAs. This characterization immediately implies
that J -trivial regular languages are closed under reverse. However, R-trivial
regular languages are not closed under reverse since not all R-trivial regular
languages are J -trivial. For instance, the R-trivial regular language of Fig. 2 is
not J -trivial, hence the minimal DFA for its reverse is not partially ordered.

The following lemma shows that in some cases we do not need to distinguish
between DFAs with and without dead state. In particular, we can get a result
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for DFAs without a dead state immediately from the analogous result for DFAs
with a dead state or vice versa.4

Lemma 1. Let L be a regular language. Then sc(L) = sc(Lc), where Lc denotes
the complement of L. In particular, we have sc(LR) = sc((Lc)R).

Proof. Let M be a minimal DFA accepting L. Then M c constructed from M by
swapping accepting and non-accepting states is a minimal DFA accepting Lc.
The second part now follows by the observation that (LR)c = (Lc)R. Indeed,
w ∈ (LR)c if and only if w /∈ LR if and only if wR /∈ L if and only if wR ∈ Lc if
and only if w ∈ (Lc)R. ut

Let M be a DFA with a dead state reaching the upper bound on the reverse.
This lemma says that if the complement of M does not have a dead state,
the same result can be reached by DFAs without a dead state. Indeed, the
complement of M reaches the bound. However, Table 1 demonstrates that there
are cases where this technique fails because both the DFA and its complement
have a dead state.

Immediate consequences of this lemma combined with the known results are
formulated below.

Corollary 1.

(i) There exist ternary R-trivial regular languages L1 and L2 whose automaton
representation has and does not have a dead state, respectively, with sc(L1) =
sc(L2) = n and sc(LR

1 ) = sc(LR
2 ) = 2n−1.

(ii) There exist J -trivial regular languages L1 and L2 over an alphabet Σ with
|Σ| ≥ n − 1 whose automaton representation has and does not have a dead
state, respectively, with sc(L1) = sc(L2) = n and sc(LR

1 ) = sc(LR
2 ) = 2n−1.

Proof. Using Lemma 1, (i) follows from [9, Lemma 3, p. 232] since the automaton
used there has a dead state and its complement does not, while (ii) follows from
the automaton used in [4, Theorem 5, p. 15]. ut

3 R-trivial regular languages

Recall that the state complexity of the reverse for R-trivial regular languages
with the state complexity n is 2n−1 and there exists a ternary witness language
meeting the bound [9]. We now prove that the ternary alphabet is optimal, that
is, the bound cannot be met by any binary R-trivial regular language.

Lemma 2. Let L be a binary R-trivial regular language with sc(L) = n, where
n ≥ 2. Then sc(LR) ≤ 2n−2 + n− 1.

4 We are grateful to an anonymous referee for pointing out this observation.
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Fig. 1. There are three trees, namely T4 = {0, 1, 2, 3, 4}, T8 = {5, 6, 7, 8}, and T9 = {9};
b-transitions are dotted.

Proof. Let M = ({1, . . . , n}, {a, b}, δ, 1, F ) be a minimal partially ordered DFA
with n states such that i � j implies i ≤ j. Let M ′ denote the subset automaton
of the NFA MR. We show that M ′ has at most n − 1 reachable states that do
not contain n− 1. By Lemma 1, we can assume that state n of M is accepting,
otherwise we take the complement ofM . Then there are three cases inM between
states n− 1 and n: (i) state n− 1 has self-loops under both letters a and b, (ii)
both letters a, b go from state n− 1 to state n, or (iii) without loss of generality,
the transition under b goes from n− 1 to n and a is a self-loop in state n− 1.

In the first case, states n and n− 1 have self-loops under both letters in M .
As n− 1 is non-accepting (otherwise equivalent to n), n appears in all and n− 1
in no reachable states of M ′. This gives at most 2n−2 reachable states in M ′.

In the second case, no sets without state n − 1 are reachable in M ′, except
for F , because state n appears in all reachable states of M ′ and any transition of
M ′ generates state n− 1 into the next state. Thus, expect for the initial state F
of M ′, every reachable state of M ′ contains both n and n− 1. Hence, the upper
bound is at most 2n−2 + 1.

In the third case, all subsets not containing state n− 1 must be reachable in
M ′ by strings in a∗. We prove that at most n− 1 such sets are reachable in M ′.
To this aim, it is sufficient to show that F · an−1 = F · an−2, where · denotes
the transition function of the subset automaton M ′. The subautomaton of M ,
defined by restricting to the alphabet {a}, is a disjoint union of trees Tq where
δ(q, a) = q and Tq consists of all states that can reach q by a string in a∗; see
Fig. 1 for illustration. Let k be the depth of Tq, and let F ′ = F ∩ Tq. If q ∈ F ′,
then F ′ · ak = Tq. If q /∈ F ′, then F ′ · ak = ∅. In both cases, F ′ · ak = F ′ · ak+1.
Now F ·am is a disjoint union of such F ′ ·am. By the assumption, all trees are of
depth at most n− 2; recall that there is no a-transition from n− 1 to n. Hence
F · an−1 = F · an−2 follows. ut

The following lemma shows the lower bound 2n−2 on the state complexity of
the reverse of binary R-trivial regular languages.
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0 1 2 . . . n− 2n− 1
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Fig. 2. A binary R-trivial regular language meeting the bound 2n−2 for the reverse.

Lemma 3. For every n ≥ 3, there exists a binary R-trivial regular language L
with sc(L) = n such that sc(LR) ≥ 2n−2.

Proof. Consider the language L accepted by the partially ordered binary n-state
DFA M depicted in Fig. 2. We show that each subset of {0, 1, . . . , n − 2} con-
taining 0 is reachable in the subset automaton of the NFA MR. The proof is by
induction on the size of subsets. The subset {0} is the initial state of the subset
automaton. Each subset {0, i1, i2, . . . , ik} of size k + 1 with 1 ≤ i1 < i2 < · · · <
ik ≤ n − 2 is reached from the subset {0, i2 − i1, . . . , ik − i1} of size k by the
string abi1−1. ut

Using a computer program we have computed a few tight bounds summarized
in Table 1. The bound 2n−2 + (n − 1) is met by a DFA for L with sc(L) = n
if n ≤ 6, but not if n = 7. In addition, more than 2n−2 states are reachable if
n ≤ 7, but not if n = 8. By Lemma 1, this means that for n = 8, the worst-case
minimal partially ordered DFA has a dead state and so does its complement. It
is worth mentioning that the witness languages are even J -trivial, hence these
tight upper bounds also apply to binary J -trivial regular languages discussed in
the next section.

Worst-case sc(LR)
where DFA for L is

n = without with Upper bound Lower bound
sc(L) dead state dead state 2n−2 + n− 1 2n−2 Witness

1 1 1 1/2 1/2
2 2 2 2 1 L2 = a∗b(a+ b)∗

3 4 4 4 2 L3 = b∗ + b∗aL2

4 7 7 7 4 L4 = b∗aL3

5 12 12 12 8 L5 = b∗a(aL3 + bL2)
6 21 21 21 16 L6 = b∗a(b∗a+ L5)
7 34 34 38 32 b∗ab∗a(a+ b)(ε+ aL3 + bL2)
8 55 64 71 64

Table 1. Tight bounds for the reverse of binary R-trivial regular languages.

We now prove that for n ≥ 8, the upper bound is 2n−2 for binary languages.
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Fig. 3. Path of length two, where x ∈ {a, b}.

Lemma 4. Let n ≥ 8 and let L be a binary R-trivial regular language with
sc(L) = n. Then sc(LR) ≤ 2n−2 and the bound is tight.

Proof. Consider a minimal partially ordered n-state DFA M over a binary al-
phabet {a, b}. By definition, each maximal state of M has self-loops under both
letters a and b, hence there are at most two nonequivalent maximal states in M .

If there are two maximal states, then one of them is accepting and the other
one is the dead state. The accepting state appears in all reachable subsets of the
subset automaton of the NFA MR, while the dead state appears in no reachable
subset. Hence the number of reachable subsets is bounded by 2n−2.

It remains to prove that 2n−2 is also the bound for M with only one maximal
state. If the only maximal state is the dead state, we take the complement that
has the same state complexity by Lemma 1 and has no dead state. Thus, assume
that M has a single maximal state, n, which is accepting. Note that if a minimal
binary partially ordered DFA has at least four states, there is a path of length
two in the automaton. Consider three last states of such a longest path, say
(n − 2) → (n − 1) → n. In particular, there is no longer path from n − 2 to n.
Note also that n − 1 is not accepting, otherwise it is equivalent to n. As in the
proof of Lemma 2, we can show that to reach the upper bound, the situation
between states n− 1 and n must be as depicted in Fig. 3.

We now compute the number of reachable sets in the subset automaton of
the NFA MR containing n and n − 1, but not n − 2. Recall from the proof of
Lemma 2 that F · ak, k ≥ 0, reaches at most n− 1 different subsets.

If both a, b go from state n− 2 to state n− 1, then there are at most n− 1
subsets in the subset automaton of the NFA MR containing n and n − 1 and
not n− 2, namely F · ak · b with k ≥ 0.

If x = a, cf. Fig. 3, we have the following cases: (i) b goes to n, (ii) b goes to
another state p /∈ {n, n − 1, n − 2} (the case p = n − 1 is discussed above), or
(iii) b is a self-loop in n− 2.

In the first case, there is no subset containing n and n − 1 and not n − 2
reachable in the subset automaton of MR because n−1 is introduced by b, which
also introduces n− 2.

In the second case, p must go to n (and only to n or p) because M has only
one maximal state, n, and there is no longer path from n− 2 to n. If p goes to n
under a, b, then p appears in all subsets containing n and n− 1, hence only F · b
contains n and n− 1 and not n− 2. If p goes to n under a and b is a self-loop in
p, then there are at most (n− 2) subsets containing n and n− 1 and not n− 2,
namely F · b · bk with k ≥ 0, computed similarly as in the proof of Lemma 2. If
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p goes to n under b and a is a self-loop in p, then p is equivalent to n − 1 (if p
is non-accepting) or to n (if p is accepting), hence it is not possible.

In the third case, all subsets reachable in the subset automaton of MR con-
taining n and n − 1 and not n − 2 are F · ak · b · b` with k, ` ≥ 0. There are at
most (n− 2)2 such subsets (at most n− 2 nonempty subsets F · ak in this case).

If x = b, we have the following cases: (i) a goes to n, (ii) a goes to another
state p /∈ {n, n− 1, n− 2}, or (iii) a is a self-loop in n− 2.

In the first case, there at most n− 1 subsets containing n and n− 1 and not
n− 2, namely F · ak · b with k ≥ 0.

In the second case, p must again go to n (and only to n or p) for the same
reason as above. If p goes to n under a, b, then p appears in all subsets containing
n and n − 1, hence at most n − 1 subsets, F · ak · b with k ≥ 0, contain n and
n− 1 and not n− 2. If p goes to n under a and b is a self-loop in p, then there
are at most 2n− 3 subsets containing n and n− 1 and not n− 2, namely n− 1
subsets F · ak · b and n− 2 subsets F · b · bk · a with k ≥ 0. If p goes to n under b
and a is a self-loop in p, then p is equivalent to n− 1 (or to n, see above).

In the third case, all subsets containing n and n−1 and not n−2 are reachable
only by strings with one b, i.e., the reachable subsets are F ·ak ·b·a` with k, ` ≥ 0.
Their number is at most (n− 2)2 (at most n− 2 subsets F · ak in this case).

By the proof of Lemma 2, there are at most 2n−2 reachable sets in the subset
automaton of MR containing n and n − 1, and at most n − 1 reachable states
not containing n − 1. Thus, for n ≥ 4 and M with no dead state, the subset
automaton of MR has at most 2n−3 + min(max(2n−3, (n−2)2), 2n−3) + (n−1)
reachable states (those containing n, n− 1, n− 2, those containing n, n− 1 and
not n−2, and those containing n and not n−1, respectively), which is less than
2n−2 for n ≥ 9. For n = 8 is the bound given by computation (Table 1). ut

Denote by fk(n) the state complexity function of the reverse on binary R-
trivial regular languages over a k-element alphabet defined by

fk(n) = max{sc(LR) | L ⊆ Σ∗, |Σ| = k, L is R-trivial regular, and sc(L) = n}.

Using this notation, we can summarize our results in the following theorem.

Theorem 1. Let n ≥ 1 and let fk(n) be the state complexity of the reverse on
R-trivial regular languages over a k-element alphabet. Then

f1(n) = n,

f2(n) =


1, if n = 1,
2n−2 + n− 1, if 2 ≤ n ≤ 6,
34, if n = 7,
2n−2, otherwise,

f3(n) = fk(n) = 2n−1, for every k ≥ 3.

Proof. Since the reverse of every unary language is the same language, we have
f1(n) = n. The upper bounds on f2 are given by Lemmas 2 and 4 and by our
calculations in the case of n = 7. The lower bounds in the case of 1 ≤ n ≤ 7 also
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follow from the calculations, while the case of n ≥ 8 is covered by Lemma 3. The
result for f3 is from Corollary 1. Since adding new letters to the ternary witness
automata does not change the proofs of reachability and distinguishability in
the ternary case, the upper bound is tight for every k ≥ 3. ut

4 J -trivial regular languages

Every J -trivial regular language is also R-trivial, hence the previous bounds
apply. To prove the results of this section, we first define Simon’s condition on
R-trivial regular languages to be J -trivial.

Let M = (Q,Σ, δ, q0, F ) be a DFA. It can be turned into a directed graph
G(M) with the set of vertices Q, where a pair (p, q) ∈ Q×Q is an edge in G(M)
if there is a transition from p to q in M . For Γ ⊆ Σ, we define the directed
graph G(M,Γ ) with the set of vertices Q by considering only those transitions
that correspond to letters in Γ .

For a directed graph G = (V,E) and p ∈ V , the set C(p) = {q ∈ V | q =
p or there is a directed path from p to q} is called the component of p.

Definition 1 (Simon’s condition). A DFA M with an input alphabet Σ sat-
isfies Simon’s condition if, for every subset Γ of Σ, each component of G(M,Γ )
has a unique maximal state.

Simon [14] has shown the following result.

Fact 2. An R-trivial regular language is J -trivial if and only if its minimal
partially ordered DFA satisfies Simon’s condition.

Note that it is more efficient to use Trahtman’s condition to decide whether
an R-trivial regular language is J -trivial. For a state p, let Σ(p) denote the
set of letters under which there is a self-loop in p. Trahtman has shown that an
R-trivial regular language is J -trivial if and only if its minimal partially ordered
DFA satisfies that, for every state p, the connected component of G(M,Σ(p))
containing p has a unique maximal state, see [16] for more details.

Using Simon’s result we immediately obtain the following lemma.

Lemma 5. Let Γ ⊆ Σ. If a partially ordered DFA M over Σ satisfies Simon’s
condition, then the DFA M ′ (not necessarily connected) obtained from M by
removing transitions under letters from Γ also satisfies Simon’s condition.

Proof. Let Σ′ = Σ \ Γ . By Fact 2, each component of G(M,Σ′) has a unique
maximal state and remains partially ordered. ut

We now prove the main result of this section.

Theorem 2. At least n−1 letters are necessary for a J -trivial regular language
of the state complexity n to reach the state complexity 2n−1 in the reverse.
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Proof. We prove by induction on the number of states that every partially or-
dered DFA M satisfying Simon’s condition with n ≥ 3 states and at most n− 2
letters has less than 2n−1 subsets reachable in the subset automaton of MR.

The basis for n = 3 holds since the automaton is over a unary alphabet,
which means that the set {F · ak | k ≥ 0} has at most three elements (cf. the
proof of Lemma 2).

Assume that for some k ≥ 3 the claim holds for every partially ordered
DFA satisfying Simon’s condition with at most k states and k − 2 letters. Let
M = (Q,Σ, δ, q0, F ) be a partially ordered DFA satisfying Simon’s condition
with |Q| = k+ 1 states and |Σ| < |Q| − 1 letters. We prove that less than 2|Q|−1

subsets are reachable in the subset automaton of the NFA MR. To do this, we
show that reachability of 2|Q|−1 subsets in the subset automaton of MR implies
the existence of a partially ordered DFA M ′′ = (Q′′, Σ′′, δ′′, q′′0 , F

′′) satisfying
Simon’s condition with |Σ′′| < |Q′′| − 1 letters, |Q′′| ≤ k states and 2|Q

′′|−1

reachable subsets in the subset automaton of the NFA M ′′R. However, by the
induction hypothesis, the number of reachable subsets in the subset automaton
of M ′′R is less than 2|Q

′′|−1, which means that the assumption of 2|Q|−1 reachable
subsets in the subset automaton of MR cannot hold.

We may assume that M is connected and has no equivalent states, since any
two equivalent states of M appear in the same sets in the subset automaton
of MR, which implies reachability of less than 2|Q|−1 subsets in the subset au-
tomaton of MR. Similarly for two or more connected components. We may also
assume that the unique maximal state of M , denoted by n, is accepting. Indeed,
a subset X ⊆ Q is reachable in the subset automaton of the reverse of M if and
only if the set Q \X is reachable in the subset automaton of the reverse of the
complement of M .

To construct M ′′, we first define nonempty sets S ⊆ Q \ F and Γ ⊆ Σ
such that |S| ≤ |Γ | and use them to construct the (not necessarily connected)
partially ordered DFA M ′′ from M by removing state n and all transitions
labeled by letters from Γ and joining all states of S into a single state. We show
that M ′′ satisfies Simon’s condition and that it has 2|Q

′′|−1 reachable subsets in
the subset automaton of the reverse. Since |Σ| < |Q|−1 and |S| ≤ |Γ |, we obtain
that |Σ′′| = |Σ| − |Γ | < |Q| − |S| − 1 = |Q′′| − 1 < k and induction applies.

To construct the sets S and Γ , let R = {q ∈ Q \ {n} | δ(q, a) = n, a ∈ Σ}
denote the set of all states different from n with a transition to n, and let
Γ = {a ∈ Σ | δ(R, a) ∩ {n} 6= ∅} denote the set of letters connecting states
of R with state n. Note that R and Γ are nonempty. Let M ′ be the k-state
subautomaton of M obtained by removing state n and all transitions labeled by
letters from Γ . By Lemma 5, M ′ satisfies Simon’s condition.

Let max(R) denote the set of states of R that are maximal in M ′. For a state
p in max(R), let Cp denote the connected component of G(M ′) containing p,
and let Σp = {a ∈ Σ | δ(p, a) = n} ⊆ Γ denote the set of labels connecting p to
n, see Fig. 4 for illustration. Note that Cp and Cq are not connected, for p 6= q,
otherwise p and q are two maximal states of the connected component containing
Cp ∪ Cq. Next, we show that for every letter a in Γ , there exists a state s in
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n

p

Σp

q

Σq

Σ

Σ \ Γ Σ \ Γ

Cp Cq

Fig. 4. The partially ordered DFA M ′; Γ = Σp ∪Σq.

max(R) such that s goes to n under a. Let a be a letter from Γ and let r be a
state in R with an a-transition to n such that no other state reachable from r
in M goes to n under a. If r is not in max(R), there is a state t in max(R) such
that r belongs to Ct. But then there are two maximal states in the component
containing r in the graph G(M, (Σ \ Γ )∪ {a}), namely n and the one reachable
from t by letters from (Σ \ Γ ) ∪ {a}. Thus, Γ =

⋃
p∈max(R)Σp. Note that all

states of max(R) are non-accepting; if a state s of max(R) is accepting, then, by
the assumption, subset {n} is reachable in the subset automaton of MR. This
requires to eliminate state s from the initial state F . However, it can be done
only by a letter from Γ , which always introduces another state from max(R).

We now prove that |Γ | ≥ |max(R)|, i.e., for every state p in max(R), there
exists a letter σp in Σp that does not appear in Σq for any other state q in
max(R). For the sake of contradiction, assume that there is a state p in max(R)

with Σp ⊆
⋃q 6=p

q∈max(R)Σq. Since all subsets containing n and p and not any q

from max(R) different from p are reachable in the subset automaton of MR,
state p is introduced to the subset from n by a transition under a letter from Σp

which also introduces a state q 6= p into that subset. Since Γ =
⋃q 6=p

q∈max(R)Σq,

any attempt to eliminate state q results in the introduction of a state q′ different
from p, which is a contradiction.

Let S = max(R). Then |Γ | ≥ |S| as required. Recall that the states of S are
maximal in M ′ and non-accepting. Thus, they do not appear in any reachable
subset of the subset automaton of the reverse of M ′. Construct the DFA M ′′

from M ′ by joining all states of S into one state. Then the subset automaton
of the reverse of M ′′ has the same number of reachable subsets as the subset
automaton of the reverse of M ′, and M ′′ satisfies Simon’s condition.

Finally, we show that M ′ (hence also M ′′) has 2|Q
′′|−1 reachable subsets in

the subset automaton of the reverse. Since n is accepting, each set X containing
n and nothing from S is reachable in the subset automaton of MR only by
symbols from Σ′′ = Σ \ Γ (otherwise a symbol from S is introduced and we
cannot get rid of states of S anymore), hence the set X \ {n} is reachable in the
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1 2 . . . n− 2 n− 1

0

a1, . . . , an−2

a1

a2, . . . , an−2 an−3, an−2

a1, . . . , an−4

an−3

an−2

a1, . . . , an−3

an−2

Σ

Fig. 5. The witness minimal partially ordered DFA M satisfying Simon’s condition.

subset automaton of M ′R. As there are 2|Q|−(|S|+1) = 2|Q
′′|−1 such sets, M ′′ has

2|Q
′′|−1 reachable subsets in the subset automaton of the reverse. This leads to

the contradiction explained above and completes the proof. ut

Using this result, we can prove the tight upper bound on the state complexity
of the reverse for J -trivial regular languages over an (n− 2)-element alphabet.

Theorem 3. Let n ≥ 3 and let L be a J -trivial regular language over an (n−2)-
element alphabet with sc(L) = n. Then sc(LR) ≤ 2n−1−1 and the bound is tight.

Proof. The upper bound follows from Theorem 2. Thus, to prove tightness, we
consider the J -trivial regular language accepted by the minimal DFA M =
({0, 1, . . . , n − 1}, {a1, . . . , an−2}, δ, 1, {0}) depicted in Fig. 5. The transitions
under a letter aj in Σ are defined by

δ(i, aj) =

 i+ 1, if i ≤ j ≤ n− 2,
0, if i = j − 1,
i, otherwise.

The initial state of the subset automaton of the NFA MR is the set {0} and,
for 1 ≤ k ≤ n − 2, every (k + 1)-element set {0, i1, i2, . . . , ik} with 2 ≤ i1 <
i2 < · · · < ik ≤ n− 1 is reached from the k-element set {0, i2, . . . , ik} by ai1−1.
This gives 2n−2 reachable states (those containing 0 and not 1). Note that the
set {0, 1} is not reachable, but all subsets of the state set of M of cardinality
at least three containing 0 and 1 are reachable since every set {0, 1, i1, . . . , ik} is
reached from the set {0, 2, i2, . . . , ik} by letter ai1−1. ut

Lemma 4 also gives the upper bound for binary J -trivial regular languages.
The witness languages in Table 1 are J -trivial. For n ≥ 8, we need a dead state
to reach the upper bound 2n−2 and our witness automata have a dead state
(Fig. 2), hence the language is not J -trivial.

Corollary 2. Let L be a binary J -trivial regular language with sc(L) = n, where
n ≥ 4, then sc(LR) ≤ 2n−3 + min(max(2n− 3, (n− 2)2), 2n−3) + (n− 1). A few
tight upper bounds for 2 ≤ n ≤ 7 are given in Table 1. ut
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Concerning the lower bound state complexity, it was shown in [5] that there
are finite binary languages whose reverse have a blow-up of 3 · 2n

2−1 − 1, for n

even, and of 2
n+1
2 − 1, for n odd. Since every finite language is J -trivial, we

obtain at least these lower bounds for binary J -trivial regular languages.

5 Conclusions

We have presented a characterization of tight bounds on the state complexity
of the reverse for R-trivial regular languages depending not only on the state
complexity of the language, but also on the size of its alphabet. As a consequence,
this characterization also gives upper bounds for J -trivial regular languages, but
they are not reachable for languages of the state complexity n over an (n− k)-
element alphabet, for 2 ≤ k ≤ n − 3. We have further shown tight bounds for
J -trivial regular languages over (n − 1)- and (n − 2)-element alphabets, but
(except for a few examples for binary J -trivial regular languages) the problem
of the tight bounds for J -trivial regular languages over an alphabet of a lower
cardinality is open.

Acknowledgements. The authors gratefully acknowledge comments and sug-
gestions of anonymous referees.
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