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Abstract

Classical Formal Concept Analysis (FCA) extracts, represents and manages

knowledge from positive information, i.e., its fundamental data model is a binary

relation between a set of objects and attributes indicating the presence of a

property in an object. However, some applications require to treat the absence of

some property in an object as a negative information to be explicitly represented

and managed, too. Although mixed (positive and negative) information has

been addressed in the past in FCA, such approaches maintain the standard

framework, which hides the specific semantics and avoids the further use of direct

techniques and methods for mixed information. In this work, the foundations

of FCA are extended and, in particular, mixed concept lattices are studied in

depth. The main result of this work is a characterization theorem specifying in

lattice-theoretic terms which lattices are isomorphic to a mixed concept lattice.
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1. Introduction

Formal concept analysis (FCA) constitutes a very successful mathematical

approach to knowledge representation, with a rich theory as well as numerous
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practical applications. At the core of FCA is a basic incidence structure (called

formal context) describing a set of objects and their attributes. From this,

one can derive formal concepts which represent sets of objects with common

attributes. Formal concepts come with a natural specialization/generalization

order and the set of all formal concepts of a formal context can be shown to form

a complete lattice with respect to that order. Conversely, it has been shown as

part of the basic theorem of FCA [7] that every complete lattice is isomorphic

to a concept lattice of some appropriately defined formal context.

The appropriate logical formalism for FCA is propositional Horn logic, i.e.

implications between conjunctions of attributes. This logical representation is

omnipresent in the areas of data mining and general knowledge discovery, and

facilitates decision making in combination with pattern recognition, clustering,

association and classification methods.

Per se, FCA is not well suited to handle negative information. Likewise,

in most data mining and knowledge discovery frameworks, implications and

association rules are typically built using positive information only. However,

driven by requirements from practical situations, diverse attempts have been

made to extend FCA to also represent negative information. For instance, Wille

introduced different versions of negation (called negation and opposition) on the

concept level [22] and characterized the structures thus obtained.

In this paper, we focus on the case where negation is available on the at-

tribute level, i.e., we assume that for every (positive) attribute a we can also

use an attribute a that holds exactly for those objects not having a. Note

that the availability of such negative attributes in implications significantly en-

hances expressivity. For example, while it is easy to express with an implication

over positive attributes that every father is a parent (through the implication

father → parent), this is not possible for the proposition that every parent is a

father or mother. However, using negative attributes, this can be expressed by

the implication father mother → parent . This shows that introducing negative

attributes allows to express correspondences that are very natural and crucial

for knowledge representation.
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One way to formalize this setting (and reduce it to the classical FCA ap-

proach) is to use the apposition of the context and its negation [3, 8], i.e. we

extend the original context by new attributes which represent the negated ver-

sions of the original attributes. However, as a basis for computations, this

representation tends to be inefficient and redundant as observed by Missaoui

et al. [16].

One of the reasons for this is that whenever negated attributes are available,

the corresponding concept lattice exhibits certain additional properties. The

central task that we tackle in this paper is to make this additional properties

explicit by characterizing the lattices (which we call mixed lattices) that arise

from negation-enhanced attributes. This requires to show two directions. First,

we identify some properties that hold for all mixed lattices; showing that these

properties indeed hold is not overly complicated. The other direction, however,

requires us to show that every lattice satisfying the characterizing properties can

indeed be obtained as mixed lattice of some formal context, which constitutes

the more intricate part of our argument.

Our results provide a better understanding of the algebraic structures ob-

tained in cases with mixed positive and negative information and will allow for

designing better, specialized algorithms which exploit these specific structural

properties.

The paper proceeds as follows: Section 2 will provide the necessary basics

of FCA. Section 3 motivates and formally introduces the considered extension

of “traditional” FCA with negated attributes by defining mixed derivation op-

erators, mixed formal concepts and mixed attribute implications. Section 4

introduces the central notion of this paper: mixed lattices, and establishes some

properties satisfied by them. Finally, Section 5 combines two of these properties

into a characterization by showing that any lattice exhibiting these properties

is isomorphic to the mixed lattice of some formal context.
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2. Preliminaries

Assuming the reader to have primary knowledge about lattices [9], we recall

some basics for a common understanding of notation Throughout the article

we will consider bounded lattices and, as usual, supremum and infimum will be

denoted by ∨ and ∧ respectively, whereas > and ⊥ will denote the maximum and

the minimum elements. In a bounded lattice L = 〈L,∨,∧,>,⊥〉, one element

j ∈ L is said to be join-irreducible or ∨-irreducible if `1 ∨ `2 = j implies `1 = j

or `2 = j for all `1, `2 ∈ L. The set of ∨-irreducible elements in L are going

to be denoted by J(L). The ∧-irreducible elements are dually defined and M(L)

denotes the set of ∧-irreducible elements in L. One element a ∈ L is said to be

an atom if ` ≤ a implies ` = ⊥ or ` = a for all ` ∈ L and the set of atoms is

denoted by At(L).

Definition 1 (atomistic lattice). A lattice L is said to be atomistic if any

∨-irreducible element is an atom, i.e. J(L) = At(L).

In addition, given one element ` ∈ L, the up-set and the down-set of ` are

[`) = {x ∈ L | ` ≤ x} and (`] = {x ∈ L | x ≤ `} respectively. Finally, `A denotes

(`] ∩ At(L) and `M denotes [`) ∩ M(L).

Now, we briefly present the basic notions related to Formal Concept Analysis

(FCA) and attribute implications. See [7] for a much more detailed record.

Basically, FCA encompasses a set of theoretical results, techniques and tools

that allows one to extract knowledge from data, to reason using this knowledge

and thereby to address practical problems. Information is usually given in

terms of relations between data elements. Working with a large amount of data

requires summarizing information in a way that the most relevant aspects are

emphasized. Such a concise summary allowing one to work in an efficient way

could be referred to as “knowledge” regarding the data. In FCA, such basic

relational data is represented by formal contexts. Specifically, in the original

formalization, a formal context is a triple K = 〈G,M, I〉 where G and M are

finite non-empty sets and I ⊆ G ×M is a binary relation. The elements in G

are called objects, the elements in M attributes and 〈g,m〉 ∈ I means that the
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object g has the attribute m. From this triple, two mappings ↑: 2G → 2M and

↓: 2M → 2G, called derivation operators, are defined as follows:

X↑ = {m ∈M | 〈g,m〉 ∈ I for all g ∈ X} (1)

Y ↓ = {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y } (2)

The pair (↑,↓ ) constitutes a Galois connection between (2G,⊆) and (2M ,⊆) and,

therefore, both compositions, ↑◦↓ and ↓◦↑, are closure operators whose closed

sets constitute a lattice.

A first summary of (knowledge extracted from) the data stored in the formal

context is given by these closed sets which lead to the notions of formal concept

and concept lattice: A pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆ M such

that X↑ = Y and Y ↓ = X is called a formal concept where X is its extent and

Y its intent. The set of all formal concepts with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 if and only if X1 ⊆ X2 (or equivalently, Y2 ⊆ Y1) (3)

is a lattice, which is called concept lattice and denoted by B(K).

Focusing the attention on relationships between sets of attributes is a sec-

ond way in which information can be summarized. These relationships among

attribute sets are described in terms of attribute implications being expressions

A → B where A,B ⊆ M . An implication A → B is said to hold in a context

K if A↓ ⊆ B↓, i.e. any object that has all the attributes in A has also all the

attributes in B. In this situation, one also says that the formal context K is a

model for (or: satisfies) A → B, denoted by K |= A → B. A direct approach

to represent this knowledge could be to consider all attribute implications that

the context satisfies. This set is called full implicational system. Both knowl-

edge extracted from the formal context, the full implicational system and the

concept lattice, are indeed two views on the same knowledge. One advantage of

the view given by attribute implications is that, although the cardinality of the

full implicational system could be very large, fortunately, this set can be further

reduced by using the well-known Armstrong Axioms. A set of implications Σ is

considered a complete implicational system for K if it satisfies the following: an
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implication holds in K (i.e. it belongs to K’s full implicational system) if and

only if it can be inferred, by using Armstrong’s Axioms, from Σ.

Observe that there exist different implicational systems for the same full

implicational system. For a detailed study about several properties related with

the size of these implicational systems, we refer to [21, 2]. Finally, there are

several algorithms in the literature to calculate from a formal context both

the concept lattice and an implicational system. The most cited one is the

NextClosure Algorithm [4]. It produces the concept lattice and the so-called

Duquenne-Guigues (or stem) basis [10] which is an implicational system whose

cardinality (number of implications) is minimum.

3. Negative attributes

Full implicational systems obtained from formal contexts provide all the

knowledge about the presence of properties in objects. However, some knowl-

edge is not covered by implicational systems because they do not consider in-

formation relative to the absence of properties (attributes).

K a b c d e

o1 × × ×

o2 × ×

o3 × × ×

o4 × ×

Table 1: A formal context

For instance, from the formal context depicted in Table 1, the following

Duquenne-Guigues basis is obtained: Σ = {e → bc, d → c, bc → e, a → b}. So,

an attribute implication holds in the context if and only if it can be inferred

from Σ by using Armstrong’s axioms. Thus, for example, the implications b→ d

and b→ c do not hold. Nevertheless, these two implications differ in how they

don’t hold in the context:
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Case A: For the first implication (b→ d), any object that has the attribute b

does not have the attribute d.

Case B: For the implication b → c, the set of objects having attribute b, can

be divided according to the presence or absence of the attribute c.

The only way to distinguish between these two situations is to enrich the expres-

sivity of the language, so that positive and negative attributes are introduced to

respectively represent the presence or absence of properties in objects. Thus, if

d denotes the absence of attribute d (negative attribute), we can express that

the implication b→ d holds in Table 1, corresponding with case A. On the other

side, regarding case B, neither implication b → c nor b → c holds. Therefore,

such an extension of the implicational language allows to distinguish both cases.

It is natural that an increase in the language expressiveness requires to revisit

the existing theoretical results, since often, a more general framework to deal

with this kind of knowledge is needed. Some starting approaches in this line can

be found in [16, 14, 15] and applications in [17, 11, 12]. In [18], we tackled this

issue focusing on the problem of mining implications with positive and negative

attributes from formal contexts. As a conclusion of that work, we emphasized

the necessity of a full development of the algebraic framework, which is the aim

of this paper. A first step in this direction was made in [19] and it is briefly

presented in this section and at the beginning of Section 4.

First, we begin with the introduction of an extended notation that allows

us to consider the negation of attributes. From now on, the set of attributes is

denoted by M , and its elements by the letter m, possibly with subindices. That

is, the lowercase character m is reserved for what we call positive attributes.

We use m to denote the negation of the attribute m and M to denote the set

{m | m ∈M} whose elements will be called negative attributes.

Arbitrary elements in M ∪M are going to be denoted by the first letters in

the alphabet: a, b, c, etc. and a denotes the opposite of a. That is, the symbol

a could represent a positive or a negative attribute and, if a = m ∈ M then

a = m and if a = m ∈M then a = m.
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Capital letters A, B, C,. . . denote subsets of M ∪M . If A ⊆M ∪M , then A

denotes the set of the opposite of attributes {a | a ∈ A} and the following sets

are defined:

Pos(A) = A ∩M , Neg(A) = A ∩M and Tot(A) = Pos(A) ∪Neg(A).

Note that A = Pos(A) ∪Neg(A).

Now, we extend the definitions of derivation operators, formal concepts and

attribute implications to the case of mixed attributes.

Definition 2 (Mixed derivation operators). Let K = 〈G,M, I〉 be a formal

context. We define the operators ⇑: 2G → 2M∪M and ⇓: 2M∪M → 2G as follows:

for X ⊆ G and Y ⊆M ∪M ,

X⇑ = {m ∈M | 〈g,m〉 ∈ I for all g ∈ X}

∪ {m ∈M | 〈g,m〉 6∈ I for all g ∈ X} (4)

Y ⇓ = {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y }

∩ {g ∈ G | 〈g,m〉 6∈ I for all m ∈ Y } (5)

Definition 3 (Mixed formal concept). Let K = 〈G,M, I〉 be a formal con-

text. A mixed formal concept in K is a pair of subsets 〈X,Y 〉 with X ⊆ G and

Y ⊆M ∪M such X⇑ = Y and Y ⇓ = X.

Definition 4 (Mixed attribute implication). Let K = 〈G,M, I〉 be a for-

mal context and let A,B ⊆ M ∪M . The context K satisfies a mixed attribute

implication A→ B, denoted by K |= A→ B, if A⇓ ⊆ B⇓.

For example, in Table 1, as we previously mentioned, two different situations

were presented. Thus, in this new framework we have that K 6|= b → d and

K |= b→ d whereas K 6|= b→ c but also K 6|= b→ c.

4. Mixed concept lattices

The goal of this paper is to develop the generalized lattice-theoretic frame-

work for the mixed attribute case. In this section we are going to introduce the
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main results of this paper, providing the properties of the generalized concept

lattice. The main pillar of our new framework are the two derivation operators

introduced in Equations 4 and 5. The following theorem ensures that these two

operators form a Galois connection:

Theorem 1. Let K = 〈G,M, I〉 be a formal context. The pair of derivation

operators (⇑,⇓) introduced in Definition 2 is a Galois connection.

Proof. We need to prove that, for all subsets X ⊆ G and Y ⊆M ∪M ,

X ⊆ Y ⇓ if and only if Y ⊆ X⇑

First, assume X ⊆ Y ⇓. For all a ∈ Y , we distinguish two cases:

1. If a ∈ Pos(Y ), there exists m ∈ M with a = m and, for all g ∈ X, since

X ⊆ Y ⇓, 〈g,m〉 ∈ I and therefore a = m ∈ X⇑.

2. If a ∈ Neg(Y ), there exists m ∈ M with a = m and, for all g ∈ X, since

X ⊆ Y ⇓, 〈g,m〉 6∈ I and therefore a = m ∈ X⇑.

Conversely, assume Y ⊆ X⇑ and g ∈ X. To ensure that g ∈ Y ⇓, we need to

prove that 〈g, a〉 ∈ I for all a ∈ Pos(Y ) and 〈g, a〉 /∈ I for all a ∈ Neg(Y ), which

is straightforward from Y ⊆ X⇑. �

Therefore, the above theorem ensures that the two compositions, i.e. ⇑◦⇓

and ⇓◦⇑, are closure operators. Furthermore, as in the classical case, both

closure operators provide two dually isomorphic lattices. We denote by B](K)

the lattice of mixed concepts with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 iff X1 ⊆ X2 (or equivalently, iff Y1 ⊇ Y2)

Moreover, as in standard FCA, mixed implications and mixed concept lattices

make up the two sides of the same coin, i.e. the information mined from a mixed

formal context may be dually represented by means of a set of mixed attribute

implications or a mixed concept lattice.

As we shall see later in this section, unlike traditional concept lattices, mixed

concept lattices are restricted to a specific lattice subclass. There exist specific
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◉
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Lattice 1 Lattice 2 Lattice 3

◉

◉ ◉

◉ ◉

◉

◉

◉

◉

◉

◉ ◉◉

◉◉

◉

Lattice 4 Lattice 5 Lattice 6

Table 2: Diagrams of some lattices

properties that lattices must satisfy to be considered a valid lattice structure

which corresponds to a mixed formal context. In fact, this is the main goal

of this paper: the characterization of those lattices which correspond to mixed

concept lattices.

In the classical framework, every complete lattice is isomorphic to a concept

lattice. However, in the mixed framework this property does not hold. For

instance, in Table 2 six different lattices are depicted. In the original framework,

all of them can be associated with concept lattices. Yet, as we shall prove later

in this paper, lattices 3 and 5 cannot be associated with a mixed concept lattice.

The following two definitions characterize two kinds of significant sets of

attributes that will be used later:

Definition 5 (Consistent sets). Let K = 〈G,M, I〉 be a formal context. A
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set A ⊆ M ∪M is called a consistent set if Pos(A) ∩ Neg(A) = ∅. The set of

consistent sets are going to be denoted by Ctts, i.e.

Ctts = {A ⊆M ∪M | Pos(A) ∩Neg(A) = ∅}

If A ∈ Ctts then |A| ≤ |M | and, in the particular case where |A| = |M |, we

have Tot(A) = M . This situation induces the notion of full set:

Definition 6 (Full consistent sets). Let K = 〈G,M, I〉 be a formal context.

A set A ⊆M∪M is said to be a full consistent set if A ∈ Ctts and Tot(A) = M .

In [11] the above full consistent notion was called a complete noncontradictory

set. In [18, 19], we chose this new term to avoid confusion with other notions

where the adjective “complete” is used: complete axiomatic system and com-

plete implicational system.

In order to study the features that characterize mixed concept lattices, we in-

troduce some lemmas that emphasize some of their specific properties. The first

of these properties is the following: in the classical framework, for every context

K = 〈G,M, I〉, the concept lattice B(K) is bounded by 〈M↓,M〉 and 〈G,G↑〉,

where M↓ and G↑ can be arbitrary sets. However, in this mixed framework, the

lower bound of B](K) is necessarily 〈∅,M ∪M〉.

Lemma 1. Let K = 〈G,M, I〉 be a formal context. Then ∅⇑ = M∪M , ∅⇓ = G

and (M ∪M)⇓ = ∅.

Remark 1. From now on, we assume w.l.o.g. that {g1}⇑ = {g2}⇑ implies

g1 = g2, i.e. there is not two identical rows in the formal context.

In the following lemma, we introduce other specific properties of the mixed

concept lattices.

Lemma 2. The following properties hold in any formal context K = 〈G,M, I〉:

1. {g}⇑ is a full consistent set and {g}⇑⇓ = {g} for all g ∈ G.

2. X⇑ =
⋂

g∈X{g}⇑ for all X ⊆ G.
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Proof.

1. {g}⇑ is a full consistent set because, for all m ∈M , 〈g,m〉 ∈ I or 〈g,m〉 /∈ I

and {g}⇑ = {m ∈M | 〈g,m〉 ∈ I}∪{m ∈M | 〈g,m〉 /∈ I} being a disjoint

union. Thus, Tot({g}⇑) = M and Pos({g}⇑) ∩Neg({g}⇑) = ∅.

On the other side, since (⇑,⇓) is a Galois connection, g1 ∈ {g}⇑⇓ implies

{g1}⇑ ⊇ {g}⇑⇓⇑ = {g}⇑. Moreover, since both {g1}⇑ and {g}⇑ are full

consistent, one has that {g1}⇑ = {g}⇑ and, the assumption of no existence

of repeated rows in the context ensures g1 = g.

2. In the same way that occurs in the classical framework, since (⇑,⇓) is a

Galois connection between (2G,⊆) and (2M∪M ,⊆), for any X ⊆ G, we

have that X⇑ =
(⋃

g∈X{g}
)⇑

=
⋂

g∈X{g}⇑. �

Another significant difference between the concept lattices and the mixed

ones is related to the atom properties. In the standard framework, the inclusion

At(B(K)) ⊆ J(B(K)) ⊆ {〈{g}↑↓, {g}↑〉 | g ∈ G} holds, but the equality is not

necessarily fulfilled. The following theorem characterizes the atoms of the new

concept lattice B](K), by means of the transformation of the above inclusion in

an equality.

Theorem 2. For every formal context K = 〈G,M, I〉, its mixed concept lattice

B](K) is atomistic and At(B](K)) = J(B](K)) = {〈{g}⇑⇓, {g}⇑〉 | g ∈ G}.

Proof. First, having fixed g0 ∈ G, we are going to prove that the mixed concept

〈{g0}⇑⇓, {g0}⇑〉 is an atom in B](K). If 〈X,Y 〉 is a mixed concept such that

〈∅,M ∪M〉 < 〈X,Y 〉 ≤ 〈{g0}⇑⇓, {g0}⇑〉, then {g0}⇑ ⊆ Y = X⇑  M ∪M . By

Lemma 2, {g0}⇑ ⊆ X⇑ =
⋂

g∈X{g}⇑. Moreover, for all g ∈ X 6= ∅, by Lemma 2,

both {g0}⇑ and {g}⇑ are full consistent sets and, since {g0}⇑ ⊆ {g}⇑, we have

{g0}⇑ = {g}⇑. Therefore, {g0}⇑ = X⇑ = Y and 〈X,Y 〉 = 〈{g0}⇑⇓, {g0}⇑〉.

Conversely, if 〈X,Y 〉 is an atom in B](K), then X 6= ∅ and there exists

g0 ∈ X. Since (⇑,⇓) is a Galois connection, {g0}⇑ ⊇ X⇑ = Y and, there-

fore, 〈{g0}⇑⇓, {g0}⇑〉 ≤ 〈X,Y 〉. Finally, since 〈X,Y 〉 is an atom, we have that

〈X,Y 〉 = 〈{g0}⇑⇓, {g0}⇑〉. �
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>

`4

`1 `2 `3

⊥

Figure 1: Atomistic lattice that is not isomorphic to any mixed concept lattice.

Observe that, with the assumption given in Remark 1, one has At(B](K)) =

J(B](K)) = {〈{g}, {g}⇑〉 | g ∈ G} and, therefore, the number of atoms in

a mixed concept lattice coincides with |G|. Moreover, for a mixed concept

〈X,Y 〉 ∈ B](K), the following two equivalences hold:

1. 〈X,Y 〉 ∈ At(B](K)) if and only if Y is a full consistent set.

2. 〈X,Y 〉 6= 〈∅,M ∪M〉 if and only if Y is a consistent set.

From the above result, we can deduce that being an atomistic lattice is a nec-

essary condition for being isomorphic to a mixed concept lattice. However, the

following example shows that it is not a sufficient condition.

Example 1. The lattice L depicted in Figure 1 is atomistic, but it is not iso-

morphic to any mixed concept lattice. This assertion can be proven by reductio

ad absurdum: assume that there exists a context K = 〈G,M, I〉 and an iso-

morphism f : L → B](K). From Remark 1 and Theorem 2, we can assume

that G = {g1, g2, g3} with f(`1) = 〈{g1}, {g1}⇑〉, f(`2) = 〈{g2}, {g2}⇑〉 and

f(`3) = 〈{g3}, {g3}⇑〉. Since `1 6= `2 and {g1}⇑ and {g2}⇑ are full consis-

tent sets (see Lemma 2), there exists some a ∈ M ∪M such that a ∈ {g1}⇑

and a ∈ {g2}⇑. In addition, since {g3}⇑ is also a full consistent set, one

has that a ∈ {g3}⇑ or a ∈ {g3}⇑ and this disjunction is exclusive. Therefore

{g1}⇑ ∩ {g3}⇑ 6= {g2}⇑ ∩ {g3}⇑. This contradicts `1 ∨ `3 = `2 ∨ `3 = >.

On the way towards the characterization of mixed concept lattices, we present

another milestone property.
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Definition 7 (Atomic ∨-simplification law). Let L be a lattice. L satisfies

the atomic ∨-simplification law if, for all a1, a2, a3 ∈ At(L), a1 ∨ a2 = a1 ∨ a3

implies a2 = a3.

The above law resembles the well-known simplification law from Group The-

ory, in this case limited to atomic elements. Notice that if a lattice satisfies the

∨-simplification law, i.e. for all `1, `2, `3 ∈ L, `1 ∨ `2 = `1 ∨ `3 implies `2 = `3,

then the lattice has at most two elements.

Theorem 3. B](K) satisfies the atomic ∨-simplification law for any formal

context K.

Proof. Consider three atoms a1 = 〈{g1}⇑⇓, {g1}⇑〉, a2 = 〈{g2}⇑⇓, {g2}⇑〉,

a3 = 〈{g3}⇑⇓, {g3}⇑〉 ∈ At(B](K)). By item 1 in Lemma 2, {g1}⇑, {g2}⇑ and

{g3}⇑ are full consistent sets. We are going to prove that 〈{g2}⇑⇓, {g2}⇑〉 6=

〈{g3}⇑⇓, {g3}⇑〉, implies 〈{g1}⇑⇓, {g1}⇑〉 ∨ 〈{g2}⇑⇓, {g2}⇑〉 6= 〈{g1}⇑⇓, {g1}⇑〉 ∨

〈{g3}⇑⇓, {g3}⇑〉.

In effect, if {g2}⇑ 6= {g3}⇑ then there exists m ∈ {g2}⇑ such that m ∈ {g3}⇑.

• If m ∈ {g1}⇑ then m ∈ {g1}⇑ ∩ {g2}⇑, m /∈ {g1}⇑ ∩ {g3}⇑ and, therefore

a1 ∨ a2 6= a1 ∨ a3

• If m ∈ {g1}⇑ then m /∈ {g1}⇑ ∩ {g2}⇑, m ∈ {g1}⇑ ∩ {g3}⇑ and, therefore

a1 ∨ a2 6= a1 ∨ a3

We have a contradiction and then a2 = a3. �

The following example shows how the properties introduced up to now are

necessary but still not sufficient conditions to characterize the mixed concept

lattices.

Example 2. The lattice depicted in Figure 2 is atomistic and fulfills the atomic

∨-simplification law presented above, but it is not isomorphic to any mixed con-

cept lattice. This last assertion can be proved by reductio ad absurdum: assume

that there exists a context K = 〈G,M, I〉 and an isomorphism f : L → B](K).
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>

`1

`2 `3 `4

`5 `6 `7

⊥

Figure 2: Example of lattice that is not isomorphic to any mixed concept lattice

From Remark 1 and Theorem 2, we can assume that G = {g1, g2, g3} with

f(`5) = 〈{g1}, {g1}⇑〉, f(`6) = 〈{g2}, {g2}⇑〉 and f(`7) = 〈{g3}, {g3}⇑〉. There-

fore, f(`1) = 〈G,G⇑〉 = f(>), which is a contradiction.

The above example shows that we have to continue the search for sufficient

conditions for characterizing mixed concept lattices.

Definition 8 (Opposite elements). Let L be a finite lattice. For each ` ∈ L,

we define its opposite element as follows:

`op =
∨
{x ∈ L | ` ∧ x = ⊥}

Observe that the opposite of a ∧-irreducible element is not necessarily ∧-

irreducible (see for example the eight-element Boolean Algebra). Now, we are

introducing some properties related to opposite elements:

Lemma 3. Let L be an arbitrary finite lattice. For all ` ∈ L,

`op ≥
∨
{x ∈ At(L) | x /∈ `A}

In addition, if L is atomistic, the equality `op =
∨
{x ∈ At(L) | x /∈ `A} holds.
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Proof. The inequality `op ≥
∨
{x ∈ At(L) | x /∈ `A} is immediate because x /∈ `A

implies ` ∧ x = ⊥, for all x ∈ At(L).

We assume now that L is atomistic and prove the contrary inequality. To

ensure that `op ≤
∨
{x ∈ At(L) | x /∈ `A}, by Definition 8, it is sufficient to prove

that, for all x ∈ L, ` ∧ x = ⊥ implies x ≤
∨
{x ∈ At(L) | x /∈ `A}. In effect, if

` ∧ x = ⊥ then xA ∩ `A = ∅. Therefore, xA ⊆ {x ∈ At(L) | x /∈ `A} and, since L

is atomistic, x =
∨
xA ≤

∨
{x ∈ At(L) | x /∈ `A}. �

Definition 9 (∧-complemented lattice). A lattice L is said to be ∧-comple-

mented if for all ` ∈ M(L) we have that `op is a complement of `, i.e. `op∧ ` = ⊥

and `op ∨ ` = >.

The following lemma, which is straightforward, establishes the connection be-

tween opposite elements and complements.

Lemma 4. Let L be a ∧-complemented lattice and ` ∈ M(L). Then, any com-

plement of ` belongs to (`op].

Theorem 4. Any mixed concept lattice is ∧-complemented.

Proof. Let K = 〈G,M, I〉 be a formal context. By Theorem 2, the mixed

concept lattice B](K) is atomistic. Given a ∧-irreducible element 〈A1, B1〉 ∈

B](K), by Lemma 3, we have that 〈A1, B1〉op = ∨{〈g⇑⇓, g⇑〉|g ∈ G,B1 * g⇑}

and, therefore 〈A1, B1〉 ∨ 〈A1, B1〉op = 〈G,G⇑〉.

To conclude this proof we prove that 〈A1, B1〉 ∧ 〈A1, B1〉op = 〈∅,M ∪M〉.

First, we are going to prove that there exists a ∈ B1 such that a ∈ B2 where

〈A2, B2〉 = 〈A1, B1〉op. Because, in this situation, a, a ∈ 〈B1 ∪ B2〉⇓⇑ and

therefore B1 ∪B2 = M ∪M .

Since 〈A1, B1〉 is ∧-irreducible, there exists a unique concept 〈A3, B3〉 cover-

ing 1 〈A1, B1〉. 〈A3, B3〉 > 〈A1, B1〉 implies that there exists some a ∈ B1rB3.

1In a poset 〈P,≤〉, we say that an element y ∈ P covers another element x ∈ P if x < y

and there is no z ∈ P such that x < z < y. In addition, when x is ∧-irreducible, y covers x

when, for all element z ∈ P , x < z iff y ≤ z.
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For all g ∈ G we prove that a ∈ g⇑ implies 〈g⇑⇓, g⇑〉 ≤ 〈A1, B1〉. By reductio

ad absurdum, let g1 such that a ∈ g⇑1 and 〈g⇑⇓1 , g⇑1 〉 6≤ 〈A1, B1〉. We have that

〈g⇑⇓1 , g⇑1 〉 ∨ 〈A1, B1〉 > 〈A1, B1〉 and therefore 〈g⇑⇓1 , g⇑1 〉 ∨ 〈A1, B1〉 ≥ 〈A3, B3〉

and a ∈ B3 which renders a contradiction.

Since 〈A2, B2〉 = 〈A1, B1〉op = ∨{〈g⇑⇓, g⇑〉|g ∈ G,B1 * g⇑} we have that

a ∈ B2 because a 6∈ g⇑ for all g such that B1 * g⇑ and g⇑ is full consistent. �

5. Characterizing Mixed Concept Lattices.

In the previous section we proved that, for every context K, the mixed

concept lattice B](K) has the following properties:

(C1) It is atomistic.

(C2) The atomic ∨-simplification law holds.

(C3) It is ∧-complemented.

Therefore, these properties establish necessary conditions for an arbitrary

lattice to be isomorphic to a mixed concepts lattice.

In this section, we want to prove that these properties together are also suffi-

cient conditions, providing a characterization theorem. Also, we will investigate

mutual relationships between the conditions. In fact, there exists a strong con-

nection between Conditions (C2) and (C3): any lattice which is atomistic and

∧-complemented satisfies the atomic ∨-simplification law.

Theorem 5. Let L be an atomistic lattice. If L is ∧-complemented, then the

atomic ∨-simplification law holds.

Proof. Let a1, a2, a3 ∈ At(L) where a1 ∨ a2 = a1 ∨ a3. Trivially, if a1 = a2

or a1 = a3, then a1 = a2 = a3. Consider that a1 6= a2 and a1 6= a3. It is

straightforward that (a1 ∨ a2)M = aM1 ∩ aM2 = (a1 ∨ a3)M = aM1 ∩ aM3.

To prove that aM2 = aM3 (i.e. a2 = a3) it is sufficient to prove that for all

m ∈ aM2 r aM1, we have that m ∈ aM3 r aM1 and vice versa.

Consider m ∈ aM2r aM1 and suppose that m /∈ aM3. Since a3 � m by Lemma 3,

a3 ≤ mop and, similarly, a1 ≤ mop. Thus, we deduce a1 ∨ a3 ≤ mop. We have
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that a2 ≤ a1 ∨ a2 = a1 ∨ a3 ≤ mop, so a2 ≤ m ∧ mop = ⊥ and there is a

contradiction because a2 ∈ At(L).

The other inclusion can be proved analogously. �

The reciprocal implication of the above theorem does not hold, as the fol-

lowing example shows.

Example 3. The lattice depicted in Figure 2 is atomistic and satisfies the

atomic ∨-simplification law, whereas it is not ∧-complemented.

In addition, Conditions (C1) and (C3) are independent. The previous example

is an atomistic lattice which is not ∧-complemented. On the other side, the

pentagon (see Lattice 5 in Table 2) is ∧-complemented but is not atomistic.

The following theorem is the main result of this paper, providing a charac-

terization of those lattices that correspond to mixed concept lattices obtained

from a formal context.

Theorem 6. A finite lattice L is ∧-complemented and atomistic if and only if

there exists a context K such that L is isomorphic to B](K), L ∼= B](K).

Proof. Given an atomistic ∧-complemented lattice L, consider the contextK(L) =

〈At(L), M(L),≤〉 and the following mapping:

h:L→ B](K(L)) with h(`) = 〈`A, `M ∪ `Mop〉

where `Mop = {m | m ∈ M(L), ` ≤ mop}.

First, we are going to prove that the mapping h is well defined, i.e. h(`) is

a concept in the lattice B](K(L)):

• To prove `A
⇑ = `M ∪ `Mop, it is sufficient to check the following equalities:

– `M = {m ∈ M(L) | a ≤ m,∀a ∈ `A}. Due to the definition of `M and `A,

and transitivity of ≤, the inclusion `M ⊆ {m ∈ M(L) | a ≤ m, ∀a ∈ `A}

is straightforward. Conversely, if m is a meet-irreducible element

with a ≤ m for all a ∈ `A, since L is atomistic, ` =
∨

a∈`A a ≤ m and

m ∈ `M.
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– `Mop = {m | m ∈ M(L), a � m,∀a ∈ `A}. For m ∈ M(L), we are going

to prove that ` ≤ mop if and only if a � m,∀a ∈ `A. If ` ≤ mop

and a ∈ `A, then a is an atom of L with a ≤ ` ≤ mop. Since L is

∧-complemented, m ∧mop = ⊥ and, therefore a � m. Conversely, if

m ∈ M(L) with a � m for all a ∈ `A then `A ⊆ At(L)rmA and, since

L is atomistic, by Lemma 3, ` =
∨

a∈`A a ≤
∨

a∈At(L)rmA
a = mop

• On the other side, we prove that `A =
(
`M ∪ `Mop

)⇓
. That is, any atom a

satisfies a ≤ ` if and only if a ≤ m for all m ∈ `M and a � m for all

m ∈ M(L) with ` ≤ mop.

If a ≤ `, by transitivity, a ≤ m for all m ∈ `M and, for all m ∈ M(L) with

` ≤ mop, since L is ∧-complemented, a � m. Conversely, if a ≤ m for all

m ∈ `M then a ≤
∧
`M = `.

Once h has been proved to be well-defined, we are going to prove that h is a

lattice homomorphism:

• It is straightforward that h(`1) ∧ h(`2) = h(`1 ∧ `2), for all `1, `2 ∈ L,

because its extents are `1A ∩ `2A = (`1 ∧ `2)A.

• To prove that h(`1)∨ f(`2) = h(`1 ∨ `2), for all `1, `2 ∈ L, we focus on the

coincidence of its intents.

(`M1 ∪ `1
M
op) ∩ (`M2 ∪ `2

M
op) = (`M1 ∩ `M2) ∪ (`M1 ∩ `2

M
op) ∪ (`1

M
op ∩ `2

M) ∪ (`1
M
op ∩ `2

M
op)

= (`M1 ∩ `M2) ∪ (`1
M
op ∩ `2

M
op) = (`1 ∨ `2)

M ∪ (`1 ∨ `2)
M
op

Finally, we prove that h is a bijection. Since the lattice is atomistic, if h(`1) =

h(`2), then their extents coincide and `1 =
∨

`1A =
∨

`2A = `2. Therefore, h is

injective. To prove that h is surjective, consider a concept 〈X,Y 〉 ∈ B](K(L))

and the element ` =
∨
X ∈ L. Since X ⊆ `A, we have that 〈X,Y 〉 ≤ h(`).

Contrariwise, h(`) ≤ 〈X,Y 〉 because Y ⊆ `M ∪ `Mop: Considering m ∈ M(L), we

distinguish two cases:

• If m ∈ Y = X⇑ then x ≤ m for all x ∈ X and, therefore, ` ≤ m i.e.

m ∈ `M.
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• If m ∈ Y , then x � m for all x ∈ X. Therefore X ⊆ At(L)rmA and, by

Lemma 3, ` =
∨
X ≤

∨
{x ∈ At(L) | x /∈ mA} = mop. That is, m ∈ `Mop. �

To conclude this section, we illustrate how the strong connection between

concept lattices and formal contexts in the classical framework has its counter-

part in the mixed framework. In particular, we illustrate the way in which, from

an atomistic ∧-complemented lattice, a formal context can be built such that

its mixed concept lattice is isomorphic to the initial lattice.

>

`9 `10 `11

`5 `6 `7 `8

`1 `2 `3 `4

⊥

Figure 3: Example of an atomistic ∧-complemented lattice.

Example 4. Let us consider the lattice L depicted in Figure 3. This lattice is

atomistic (i.e. J(L) = At(L) = {`1, `2, `3, `4}) and ∧-complemented because its

∧-irreducible elements are `1, `8, `9, `10 and `11, and their opposite elements,

which are also complement, are `11, `5, `4, `3 and `1, respectively.

Table 3 shows the context K(L) = 〈At(L), M(L),≤〉 and it is just a matter of

computation to check that B](K(L)) is isomorphic to L.

6. The negation issue: a comparison of related approaches

Although FCA is underpinned on positive information, driven by the prac-

tical needs and the applications, diverse attempts have been made to extend
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K(L) `1 `8 `9 `10 `11

`1 × × ×

`2 × × ×

`3 × × ×

`4 × × ×

Table 3: The formal context K(L) = 〈At(L), M(L),≤〉

FCA to also represent negative information. It can be made at two levels: by

considering negation of attributes or concepts.

In this paper, the negation of the attributes has been taken under con-

sideration. On the same level, Ganter and Wille [7, Page 60] suggested how

to dichotomize a context. A context K = 〈G,M, I〉 is dichotomous if, for all

m1 ∈M there exists m2 ∈M such that 〈g,m1〉 ∈ I iff 〈g,m2〉 6∈ I for all object

g ∈ G. For every dichotomous context K, B](K) ∼= B(K) holds and, therefore,

the characterization given in this paper (Theorem 6) applies. There exists a sig-

nificant number of articles in the literature following this line. For instance, in

[16], Missaoui, Nourine and Renaud considered the apposition of the context and

its negation, i.e. K|K = 〈G,M ∪M, I ∪ I〉 where 〈g,m〉 ∈ I iff 〈g,m〉 6∈ I. It is

straightforward that K|K is dichotomous and B](K) = B(K|K). An alternative

view was given in [11] where, applying FCA to Machine Learning, Kuznetsov

used k-dimensional dichotomic scales, as defined in [7, Page 57]. Context are

dichotomized by using the scale DM = ./m∈MDm, which is the semiproduct2 of

the dichotomic scales Dm = 〈{0, 1}, {m,m}, {〈1,m〉, 〈0,m〉}〉. The scale DM is

dichotomous, it has 2|M | objects and 2|M | attributes, and its (mixed) concept

lattice has 3|M | + 1 formal concepts.

Among the approaches considering negation on the concept level, Wille [22]

introduced different versions of negation (called weak negation and weak op-

2The semiproduct of two contexts K1 = 〈G1,M1, I1〉 and K2 = 〈G2,M2, I2〉 is defined

in [7, Page 46] as K1 ./ K2 = 〈G1 ×G2, ({1} ×M1) ∪ ({2} ×M2),5〉 where (g1, g2)5 (j,m)

iff giIim for i ∈ {1, 2}.
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position) and characterized the structures thus obtained. In a formal context

K = 〈G,M, I〉, the weak negation of a concept 〈A,B〉 is defined as 〈A,B〉4 =

〈(G r A)↑↓, (G r A)↑〉 whereas the weak opposition is defined as 〈A,B〉5 =

〈(M r B)↓, (M r B)↓↑〉. A concept lattice equipped with these two operations

is called a concept algebra. Wille also introduced the notion of weakly dicom-

plemented lattice to capture the equational theory of concept algebras. Several

original laws are expected to be fulfilled when a negation is introduced, namely

principium exclusi tertii, principium contradictionis and duplex negation affir-

mat. However, they do not necessarily hold in a weak negation or in a weak

opposition. In [13], Kwuida, Tepavc̆ević and S̆es̆elja studied the subsets of con-

cept algebras where those laws can be ensured. Ganter and Kwuida stated

that finite distributive concept algebras are exactly finite distributive weakly

dicomplemented lattices [5].

It is straightforward that, in a mixed concept lattice B](K), the weak nega-

tion of a concept coincides with our notion of opposite element, i.e. 〈A,B〉4 =

〈A,B〉op (see Lemma 3). On the other hand, the weak opposition is naturally

defined in our framework as 〈A,B〉5 = 〈((M ∪M) r B)⇓, ((M ∪M) r B)⇓⇑〉.

Thus, the role of weak opposition in our approach is trivial since it can be

described as follows:

• If 〈A1, B1〉 is an atom in B](K) and there is another atom 〈A2, B2〉 such

that B1 = B2 (recall that B1 and B2 are full consistent sets in this case),

then 〈A1, B1〉5 = 〈A2, B2〉.

• 〈∅,M ∪M〉5 = 〈G,G⇑〉 and 〈A,B〉5 = 〈∅,M ∪M〉 otherwise.

As in the general case, in mixed concept lattices, the weak negation satisfies

the principle of excluded middle. The principle of contradiction is ensured

for the weak negation of ∧-irreducible elements (mixed concept lattices are ∧-

complemented) but not necessarily in other elements. See, for instance, the

mixed concept lattice depicted in Figure 3, where the weak negation of `7 is `9

and `7 ∧ `9 = `2 6= ⊥. Analogously, the law of double negation can be ensured
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for ∧-irreducible elements but not in general, e.g. `442 = >4 = ⊥ in the same

example.

Obviously, the above discussion concerning weak negation, weak opposition

and the classical laws related to negation can also be stated for the concept

lattice of a dichotomous context.

Since neither the diamond, nor the pentagon obey both the atomic ∨-

simplification law and the fact that mixed concept lattices are atomistic, it

is natural to ask how these properties relate to distributivity. In this line, it is

easy to prove the following proposition.

Proposition 1. Any finite boolean lattice is a mixed concept lattice.

However, the contrary result does not hold: there exist mixed concept lattices

embedding a pentagon or a diamond as a sublattice. See, for instance, the

lattice depicted in Figure 4.

>

`5 `6 `7 `8

`1 `2 `3 `4

⊥

Figure 4: Mixed concept lattice that is neither distributive nor p-algebra.

In [6], Ganter and Kwuida define a negation on the concept level by using

pseudocomplemented lattices, also known as p-algebras. In a bounded lattice,

the pseudocomplement of an element `1, if it exists, is the largest element `∗1

such that `1 ∧ `2 = ⊥ iff `2 ≤ `∗1. Thus, a p-algebra is a bounded lattice where

any element has a pseudocomplement. In a concept lattice, the pseudocom-

plement of a concept 〈A,B〉 is the most general concept (when it exists) that

contradicts 〈A,B〉. Such a pseudocomplement may be interpreted as a nega-

tion of the concept. The following proposition can be proved by identifying the
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pseudocomplement of an element with its opposite one.

Proposition 2. Any finite atomistic p-algebra is a mixed concept lattice.

In addition, in a mixed concept lattice, for any ∧-irreducible element, its oppo-

site element is also its pseudocomplement. However, not every mixed concept

lattice is a p-algebra. For instance, the lattice depicted in Figure 4 is a mixed

concept lattice, but the atoms have no pseudocomplement.

7. Conclusions and future work

In this work, the foundations of formal concept analysis have been extended

to consider negative information on the attribute level. Previous work in the lit-

erature sticks to the original framework and introduces some alternative strate-

gies to adapt classical methods and techniques to the richer environment. Such

an approach hides the semantics of mixed information and may lead to subop-

timal algorithmic approaches, avoiding the use of the direct results emerging

in the new framework. Contrariwise, here we propose to modify the algebraic

foundations to exploit all the advantages of the inherent semantics of the nega-

tion.

Such a challenge requires a deep theoretical study covering the definition of

some of the main elements of FCA and, even more, the connections among them.

In this work we focused on the two pillars of FCA: formal context and concept

lattice. One key point in FCA is that, given an arbitrary lattice, there always

exists a formal context whose concept lattice is isomorphic to it. In contrast

to this situation in standard FCA, when negative attributes are considered,

for some lattices such an isomorphism to a mixed concept lattice cannot be

built. The main result of this work, presented at the end of the paper, is the

theorem which allows to characterize those lattices that are isomorphic to a

mixed concept lattice.

As future work, the extended framework and its new results will pave the

way toward direct algorithms to compute mixed concept lattices. They will be
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inspired by the classical ones but take into account the advantages provided by

the algebraic results presented here, allowing an increase in performance. As a

first step in this direction, in [20], we make a review of the most relevant tradi-

tional algorithm for mining concept lattices and propose a preliminary extended

versions of all of them to compute mixed concept lattices. Our intention is to

study the applicability of the results given in [1] to the problem of mining mixed

concept lattices.

On the other side, this is only the first step in the development of a complete

study of mixed formal concept analysis. Regarding mixed concept lattices, the

consequences of special cases where additional properties are present have to be

studied.
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