
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

A More Efficient Parallel Unit Propagation

Norbert Manthey

KRR Report 11-04

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden

A More Efficient Parallel Unit Propagation

Norbert Manthey

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. This work extends early work about parallel unit propaga-
tion in SAT solvers. Since CSP solvers use SAT solvers as backend, par-
allel solving ships with parallel SAT solvers. The parallelization is based
on splitting the formula into partitions. Each thread will propagate all
literals only on its private partition and communicates the found implied
literals with the other threads without using locks. The prototype im-
plementation [12] mentioned some weaknesses that have been analyzed
and improved in this work. The absence of load balancing is tackled by
introducing two load balancing partition functions for the formula. The
first method is based on the number of clauses per partition and results
in a moderate speedup of 7%. Distributing clauses based on the num-
ber of occurrences per variable results in a completely different search
path and increases the number of solved instances from 61 to 67. The
analysis of the implementations is based on five runs on the SAT Race
2010 benchmark per configuration. Still, there is no common way to com-
pare parallel solvers, so that a pessimistic approach has been chosen in
this work.

1 Introduction

The satisfiability problem(SAT) is an intensely studied problem in Computer
Science. Due to the power of SAT solvers applications like planning, scheduling
or cryptography ([10,1,16]), are solved in the domain of SAT. Furthermore, finite
domain CSP solvers use SAT solvers as back-end and solve a CSP problem after
they translated it into a SAT problem [17].

The introduction of the multi core architecture and the reduced increasing
the CPU frequency force developers of SAT solvers to create parallel systems. A
modern CPU has 4 to 6 cores and provides simultaneous multi threading. These
cores need to be provided with work. Most parallel solvers follow a portfolio
approach [6]. With this approach, the number of parallel running solvers is lim-
ited by the memory bandwidth. The number of future processors will increase
further [3] and also GPUs yield highly parallel computation power.

In this paper the most time consuming part of the sequential SAT solv-
ing algorithm CDCL [15], namely the unit propagation (UP) is parallelized by
extending the research of [12]. The algorithm splits the clause database into par-
titions so that each processor can work on its private clauses. The parallelization

2

of a SAT solver also enables CSP solver to be parallelized, if they use the SAT
solver as back end.

The improved algorithm is implemented in the CDCL solver riss1[13] and
the performance measurements use the benchmark of the SAT Race 2010. The
parallel implementation has been run several times to get an average result. For
comparing the results, a pessimistic evaluation is used, because the paralleliza-
tion is fine grained and therefore it behaves randomly due to race conditions.

The parallel unit propagation is a technique that is orthogonal to all recently
used parallelizations. The portfolio approach runs several solvers in parallel and
clauses are exchanged. Search tree splitting creates sub formulas out of the origi-
nal formula and solves each sub formula with a solver. Finally, also the variables
can be split into sets and assignments have to be found for each set, such that
finally the whole problem is either satisfied or unsatisfied by again using multiple
solvers. The solvers that are used in all the three approaches can be extended
by the parallel unit propagation and thus can be speed up the solving process
further.

This paper is consequently structured in the following way. Important details
of the parallelized UP are given in Section 2. The improvements for the paral-
lelization are introduced in Section 3. Section 4 will focus on the results of the
experiments. Finally, a conclusion and future work are given in Section 5.

2 Preliminaries

Specifying a SAT problem is done in conjunctive normal form (CNF). The de-
scription of the problem is given by a set of n propositional variables that are
represented by natural numbers starting with 1. These variables can occur in
literals positively or negatively, e.g. 2 respectively ¬2. In addition to the vari-
ables, a problem is specified by a set of clauses F where a clause is a disjunction
of literals. A clause is denoted by using square brackets, for example [¬1, 2,¬3].
The set of clauses is written by using angle brackets F = 〈[1], [¬2]〉. To solve
a SAT problem, a mapping from the set of variables to true or false has to be
found such that for every clause at least one of its literals is satisfied.

This work focuses on CDCL solvers [15], that is an extension of the DPLL
procedure [4]. The main part of the runtime, about 80%, of this algorithm is
spent on unit propagation (UP) [7]. In the sequel it is assumed that the reader is
familiar with the CDCL algorithm and the Two-Watched-Literal scheme. More
details can be found in [2,14]. The definitions for reason clause and conflict clause
are taken from [12] and also the requirements for UP will be used.

2.1 The Original Algorithm

The parallelization in [12] takes advantage of multiple cores without introducing
twice as many additional memory accesses. Other recent systems, e.g. [11,6],

1 The source code is available at http://gitorious.org/riss.

http://gitorious.org/riss

3

that use the portfolio approach copy most clauses or introduce expensive mem-
ory indirection. The parallel UP also takes advantage of the shared memory
architecture by communicating via the lower cache hierarchy levels. Further-
more, no locks are needed to implement this algorithm. The work in [12] has
already shown that this technique does not scale beyond 2 cores. Still, there
are improvements that can be applied to the presented methods, although the
algorithm itself is P-complete [9].

Number of new implied literals Ratio

2 13%

4 4%

Fig. 1: Sequential unit propagation implementation

Measurements based on the SAT Competition 2009 application benchmark
have shown that in praxis each literal that is propagated finds more than a
single literal, that is added to the propagation queue. Table 1 shows the related
data. If a literal is propagated, at least 2 more literals are found in 13% of
all propagation. For at least 4 new literals this number decreases to 4%, that
are already included in the 13%. Since the new literals are implied by a reason
clause, these literals can be found in parallel by searching the clauses in parallel.

0:traditionalPropagate(){

1: C = 0;

2: while(not myQueue.processed()){

3: l = myQueue.dequeue(); // keep on queue, remember last processed element

4: C = propagate(l); // enqueues implied literals

5: if(C != 0) break;

6: }

7: return C;

8:}

Fig. 2: Sequential unit propagation implementation

Figure 2 shows the unit propagation, as it is implemented in state-of-the-art
SAT solvers. Furthermore, there is only one queue, trail and assignment in the
traditional solver. This scheme is also applied per thread in the parallel UP. The
propagation uses the queue myQueue for literals that still need to be propagated.
The initial queue contains only the decision literal. Afterwards, the presented
algorithm is executed. As long as there are literals in the myQueue (line 2), these
literals are propagated. In the traditional method, processed literals are removed
from the queue when they are propagated. For the parallel version, each thread
never removes literals from myQueue during propagation (line 3). Each thread

4

simply stores the index of the last propagated literal. While propagating (line
4) a literal, further implied literals might be found. These literals are added to
their queue and the reason clause is stored. If a conflict clause has been found,
the propagation is interrupted and the conflict clause is returned (line 7). By
returning 0, the method indicates that the propagation reached a fix point.

0:propagate(){

1: while((not all finished) and (no conflict signaled)){

2: C = traditionalPropagate();

3: if(C != 0){ signalConflict(C); break; }

4: check all other threads for new literals;

5: }

6: if((master) and (conflict not from master)){

7: updateMaster();

8: }

9:}

Fig. 3: Parallel unit propagation implementation

For the parallel solver additional work has to be done. During the initializa-
tion of the solver, the clause database is split into partitions using a function
Assign: clause → partition that assigns each clause to a partition. Each partition
is assigned a thread Ti. If the number of threads is n than there are n partitions.
A thread is only allowed to work on its own partition. The CDCL algorithm is
executed by a single master thread that is allowed to read all clauses. For UP the
slave threads are waked up from a sleep state. Additionally to the propagation
itself, the communication among the threads has to be handled. The parallelized
propagation, which is presented in Figure 3, is based on the traditional method.
Now each thread executes the same algorithm: As long as there is any thread
that still has to propagate literals and there is no conflict, all threads will not
leave the propagation loop (line 1). Afterwards, the traditional propagation with
all its consequences is executed on the threads partition. If a conflict occurred,
this conflict is reported to all threads and the propagation is stopped. Otherwise,
the private literal queue myQueue is now filled with implied literals that have
been found by other threads (line 4). This can be done cheaply be reading all
the literals of the queue of the other threads. Each literals is only enqueued once
per thread. If all threads propagated all literals, the propagation reached a fix
point. In case of a conflict, the trail of the master thread is updated (line 6-8).
More details and a sketch of a correctness proof of this algorithm can be found
in [12]. There are some weaknesses of the algorithm that have also been given:

1. There is a waiting time between the propagating threads
2. There is no load balancing of the learned clauses, especially after removals
3. The thread management uses about 2% of the runtime
4. The approach does not scale beyond 2 cores

5

These first three weaknesses are tackled by introducing several heuristics to
assign clauses and by improving the implementation of the thread management.

2.2 Parallel Algorithm Evaluation

Comparing parallel algorithms is very hard, because the individual runs cannot
be reproduced due to race conditions. In [5] the portfolio approach has been ex-
tended to be reproducible by introducing synchronization points. This method
cannot be applied to the parallel UP, because it would result in an almost sequen-
tial propagation process and all the benefits of the parallel execution would be
lost. The parallel UP behaves more like a randomized sequential solver. There-
fore, methods for randomized algorithms might be used.

In [8] the runtime distribution of randomized complete sequential solvers has
been discussed. The analysis is based on multiple runs of the algorithm. The used
randomization is based on the random seed that is used for random decisions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

d
is

tr
ib

u
ti
o

n

runtime

runtime distribution for 9vliw-m-9stages-iq3-c1-bug5.cnf

3
5
7
9

100

Fig. 4: Runtime distribution for 9vliw m 9stages iq3 C1 bug5.cnf, sampled by
100 runs

Evaluating parallel solvers can be done by looking at their runtime distribu-
tion as well. The instance 9vliw m 9stages iq3 c1 bug5.cnf from the SAT 2009
application benchmark is solved as an example and the distribution is given in
Figure 4. Usually, the runtime of an instance is bounded by a tmin and tmax.

6

For the given instance, tmin is 30 second and tmax is 900 seconds, because on
of the runs for this instance timed out. Within these bounds, each time is hit
with a certain probability. Using the distribution, it can be stated that that the
instance can be solved within a certain time by giving a probability. For the
example, it can be stated that with 80% the given instance can be solved within
320 seconds. By comparing these distributions one can compare the robustness
of a parallelization on the one hand and on the other hand a solver clearly has a
higher performance than another, if its distribution dominates the distribution
of the other solver. Unfortunately, these distributions cannot be calculated by
analyzing the solving algorithm and the instance. To obtain a distribution, the
randomized solver has to be executed multiple times. From a practical point of
view and to save resources, the number of runs should also be limited without
introducing a big error.

Different clauses can be learned, since the order of reason clauses and prop-
agated literals can be very different. From the first different learned clause, the
search space that is examined by the solver will be different. Afterwards, the
solving time cannot be predicted anymore. Both, super-linear speedups and slow-
downs can be experienced. Thus, comparing a single run of the two algorithms
is not appropriate.

Since it is not possible to run each configuration very often on each instance,
due to limited computational resources, the distribution per instance is be sam-
pled. Comparing two solvers on a given instance, the two distributions should be
compared. To reduce the number of runs, only the median could be considered,
because this value has the highest change to be hit. For a better comparison,
a certain threshold probability should be introduced. Whenever a configuration
is faster than another in many cases, this configuration should be considered
the better configuration. If no clear winner can be determined, the according
instance should be counted as a draw. By using this technique, the resulting
comparison should yield better results than comparing only a small number of
runs.

For the final comparison of our parallel algorithms we compare the highest
runtime the algorithm would reach in 80% of its executions. This percentage
is a trade-off between not using too much resources for the experiments and
giving a comparison that holds for most of the cases. The presented comparison
is a pessimistic way, because it does not take into account that for 70% of the
executions algorithm A is faster than algorithm B, if algorithm A times out in the
remaining 20%. Of course, using another value can lead to different outcomes of
the algorithm2. We claim, that using this value yields a smaller error than simply
using the average of all the performed runs. Still, a study on the comparison and
evaluation of parallel algorithms has to be done.

2 All measurements of each configuration are provided at to repeat the measure-
ment with another threshold at http://www.ki.inf.tu-dresden.de/~norbert/

paperdata/PMCS2011.html

http://www.ki.inf.tu-dresden.de/~norbert/paperdata/PMCS2011.html
http://www.ki.inf.tu-dresden.de/~norbert/paperdata/PMCS2011.html

7

3 Parallel Unit Propagation

The improvements of the parallel UP are presented in the order the weaknesses
have been presented in Section 2. Afterwards, the comparison method per thread
is presented. Finally, results for the improvements are given in the next Section 4.

3.1 Introducing Load Balancing

The used Assign function in [12] simply distributes alternating. When a removal
is executed, the size of the partitions can become unbalanced and the time
to execute propagation might differ per thread. To avoid the waiting times of
single threads that wait for others to finish their propagation, load balancing is
introduced. The first approach is to spread learned clauses into partitions so that
each partition has the similar size. The function Assignsize applies this method.

Another method is to spread the clauses according to its literals. The clause is
assigned the partition that has the least number of clauses with the literals of the
clause. The motivation of this approach is to balance the execution times of the
propagations for each literal better. The according function is called Assigncount.

3.2 Introducing Spinlocks

If other parts of the CDCL algorithm than UP are executed, the slave threads are
not needed, because the other algorithms are not yet parallelized. Their waiting
has been implemented by using semaphores. With this decision, the CPU time
of the solver can be reduced, because waiting thread are set to a sleep state.
For entering and leaving the sleep state, system calls need to be executed. The
analysis in Section 4 showed, that 1.7% of the execution time is spend in system
calls. For 4 threads this number increases to almost 5%. The system calls can
be avoided by using spin locks. A waiting thread will not go to a sleep state but
waits to continue its execution by waiting for a variable taking a certain value.
The configuration Busy uses spin locks instead of semaphores for the thread
management.

3.3 Avoiding Execution Overhead

Additionally to the weaknesses in Section 2.1, the parallel UP might execute
unnecessary propagation steps, because a conflict has been already found by
another thread. The first thread will still execute its private propagation until
fixpoint. Therefore, in the traditional propagate method (Figure 2) a check can
be added, that stops the algorithm in case of a conflict before the next literal
is propagated. Thus, no unnecessary literals needs to be propagated. Another
weakness is the recognition of conflicts. Assume the master thread has already
propagated a variable with positive polarity. Without any synchronization, a
slave thread might find that this variable has also to be propagated with neg-
ative polarity. This conflict will recognized only when the two threads perform

8

Configuration CPU time Wall time Idle time UP System Solved

Original avg. 758.27 465.76 15.77 63.37 7.61 61

median 189.22 151.19 1492 72 1.44

Assignsize avg. 696.83 433.29 47.72 62.63 60

media 175.62 138.26 1232.5 71.5

Assigncount avg. 1028.88 598.86 294.78 68.98 67

median 190.07 152.8 9371 76

Fast avg. 859.01 501.52 32.83 64.1 60

median 229.60 157.61 2832 75

Busy avg. 834.35 465.90 16626.21 62.41 0.44 61

median 194.59 153.34 1201 70 0.276017

Table 1: Comparing measurements of parallel UP configurations

synchronization. If a slave thread checks the assignment of the master, the con-
flict can be found earlier and the propagation is also stopped faster. Checking
all assignments of the slave threads is more expensive. Therefore, only a sin-
gle check with the assignment of the master has been chosen. The name of the
configuration, that implements these two combinations, is called Fast.

4 Experiments

The SAT solver riss [13] with the implemented parallel UP has been used for
experiments and has been extended. The same settings as in [12] have been
applied for running the original parallel UP. All the improvements have been
also implemented into the solver. For the comparison the benchmark of the SAT
Race 2010 has been used and a timeout of 3600 seconds has been applied. The
used cluster operates on an AMD Opteron 285 CPU with 2.66 GHz and 2GB
main memory and thus has not the same power as the CPU that has been used
for the original experiments. As suggested in Section 2, the 4th slowest out of 5
runs is used for the comparison to compare the 80%-threshold of the runtime.
All the configurations are analyzed by using 2 threads.

The main results of the experiments are presented in Table 1. The table
shows the configuration and gives the average and median value for the solved
instances for the CPU time, the wall clock time and the system time (System)
in seconds. It furthermore provides the idle time in seconds. This time measures
the time that is spend by a thread that waits for the other thread to finish its
execution or to find a new implied literal. The UP value gives the percentage of
the time that is spend for UP during executing the search algorithm.

4.1 Selecting an Assign Function

The function Assign is initially set to spread original clauses and learned clauses
alternating. Both the Assignsize and Assigncount function are compared against
the sequential algorithm and the original parallel UP.

9

Comparing the solved instances, the clear winner is the Assigncount balancing
method. The Assignsize can solve one instance less than the original configura-
tion, but the average runtime decreases by 7%.

The aim of the new load balancing procedures was to reduce the idle time. In
average, balancing based on the number of clauses per partition does not seem
to pay off. In fact, even more idle time is introduced. The Assigncount method
has an even worse picture. In average, a third of the CPU time is spend for
waiting. Even the overall time of unit propagation increases by 4% from 72%
to 76%. For the load balancing with the Assignsize function, this ratio decreases
only slightly, but not significantly. Still, the idle time is higher.

A summary of this comparison can be drawn: The changed load balancing
scheme can influence the direction of the search in the search tree dramatically.
Although the performance of UP itself has been decreased, the Assignsize func-
tion was able to solve more instances than the original version of the parallel UP.
So far it is unclear, which effect the parallelized UP has to the performance of
the SAT solver at all, because not only UP is improved but also the search tree
is changed. By using load balancing with the Assignsize method, 7% runtime
improvement can be gained.

4.2 Comparing Locking Techniques

Since the parallel UP reports 1.5% system time, the thread management might
be improve by using spin locks instead of semaphores. The original algorithm
has been altered accordingly. Table 1 shows the comparison of these two syn-
chronization techniques. In the measurements of this work, the percentage of the
system time is 1.6% for the original implementation and 0.07% if spin-locks are
used. The very small value shows that the implementation of the locks cannot
be improved further. If spin locks are used, the overall performance of the solver
does not increase significantly and the number of solved instances stays the same.
The ratio of UP time to search time is slightly less than in the original imple-
mentation. This effect can be explained by the reduced latency. If semaphores
are used, the slave threads are waked up sequentially. By using spin locks, each
thread can start working immediately after new work has been given to it. A
drawback of the spin locks is, that more CPU time is used than for semaphores,
because even if the conflict analysis is performed by the master thread, the slave
threads are running. The CPU time is still not twice the wall clock time, because
before the search is started the preprocessor is executed sequentially. Thus, there
is a part of the wall clock time that is only counted once for the CPU time.

4.3 Conflict Detection Approaches

The last improvement of this work is to be able to detect conflicts faster than
in [12]. The configuration Fast has been compared with the original algorithm
and the results are also presented in Table 1. It can be seen, that the number of
solved instances differs only by one to the original approach. Both the CPU time
and the wall clock time are higher than in the original algorithm. The average

10

and the median of the percentage of UP to search and the idle time increased
also slightly. One of the reasons for this behavior might be the implementation
of the fast conflict detection. Since the slave thread reads the assignment of the
master thread during each enqueue operation, this information has to be passed
from one core of the CPU to another one by following a coherency protocol.
Executing this protocol is time consuming. Thus, if the two threads are working
on the same part of the assignment, additional waiting time is introduced, that
has not been analyzed in detail so far. At the moment, this fast conflict detection
cannot be regarded as an improvement.

5 Conclusion and Future Work

In this paper an extension of the parallel unit propagation is presented. The
aim is to speed up the solving process further by tackling the weaknesses of the
first algorithm. The main issue, load balancing, of the previous work was solved
by introducing two schemes that split the formula into two partitions. The aim
is to provide each thread with a set of clauses such that the communication
among the threads is reduced. This work proposed two algorithms for this task.
The first is based on the number of clauses in each partition and results in 7%
runtime improvement. The second partition function balances the clauses based
on the variables of the clauses. Surprisingly, this method results in a better
performance by solving 6 more instances although it decreases the performance
of unit propagation. By chance, this algorithm seems to guide the search into a
good direction for the selected benchmark. More detailed experiments should be
carried out for this configuration.

Using spin locks instead of semaphores to suspend slave threads during the
execution of conflict analysis reduces the time that is spend during operating
system calls almost to zero seconds. However, the CPU time is increased due to
busy waiting and no real improvement in the runtime is made. Thus, semaphores
are still a good choice to reduce the CPU time that is needed to execute the al-
gorithm. This result also indicates, that several parallel unit propagation solvers
in a portfolio system do not need twice as many cores because the slave threads
are not executed with 100% load and thus cores could be shared.

Further improvements have been suggested by trying to reduce idle times
with a faster global conflict detection. This approach failed and has to be ana-
lyzed further in more detail. The reason for the slower unit propagation perfor-
mance can be the sharing of a single cache line among several cores in a CPU.
A resource analysis of the parallel unit propagation and also of a portfolio based
parallelization of the solver is considered future work.

As further future work, the presented approach will be combined with the
current most used parallelization approach: the portfolio approach. The fact that
using semaphores is already efficient points into this direction. Provided with a
solver that can solve SAT instances in parallel and uses more than 4 cores,
its utilization will be analyzed and improved for modern and future memory
architectures. Scalability plays a huge role and is the main aim of our current

11

research. Developing a SAT solver that can also be executed on massively parallel
architecture is the next big goal of our work.

To reach this goal we also need to find a way to evaluate parallel algorithms
with a non-deterministic behavior and to be able to state the significance of
empirical results. To the knowledge of the author, there is no proposal how to
study this kind of algorithms.

Acknowledgment The author would like to thank Holger Hoos for suggesting
the distribution sampling to analyze the runtime behavior of the parallel unit
propagation.

References

1. R. Béjar and F. Manyà. Solving the round robin problem using propositional
logic. In Procs. 17th National Conf. on Artificial Intelligence and 12th Conf. on
Innovative Applications of Artificial Intelligence, 2000.

2. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-
bility. IOS Press, 2009.

3. Intel Corporation. Intels Teraflops Research Chip.
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_

Research_Chip_Overview.pdf, 2010.

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

5. Youssef Hamadi, Said Jabbour, Cdric Piette, and Lakhdar Sas. Deterministic
parallel dpll: System description. In Pragmatics of SAT(POS’11), jun 2011.

6. Youssef Hamadi, Säıd Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver.
JSAT, 6(4):245–262, 2009.

7. Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving resource-
unaware sat solvers. In Christian Fermüller and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, volume 6397 of Lecture
Notes in Computer Science, pages 357–371. Springer Berlin / Heidelberg, 2010.

8. Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Strategies for solving
SAT in Grids by randomized search. In Serge Autexier, John Campbell, Julio
Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk, editors, AISC 2008,
volume 5144 of Lecture Notes in Artificial Intelligence, pages 125–140. Springer,
2008.

9. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. AI, 45(3):275–286, Oct 1990.

10. H. Kautz and B. Selman. Planning as satisfiability. In Procs. 10th European
Conference on Artificial Intelligence, 1992.

11. Stephan Kottler and Michael Kaufmann. Sartagnan - a parallel portfolio sat solver
with lockless physical clause sharing. In Pragmatics of SAT, 2011.

12. Norbert Manthey. Parallel SAT Solving - Using More Cores. In Pragmatics of
SAT(POS’11), 2011.

13. Norbert Manthey. Solver Submission of riss 1.0 to the SAT Competition 2011.
Technical Report 1, Knowledge Representation and Reasoning Group, Technische
Universität Dresden, 01062 Dresden, Germany, January 2011.

14. Lawrence Ryan. Efficient algorithms for clause-learning sat solvers, 2004.

http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf

12

15. João P. Marques Silva and Karem A. Sakallah. GRASP: A new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM international conference
on Computer-aided design, ICCAD ’96, pages 220–227, Washington, DC, USA,
1996. IEEE Computer Society.

16. Mate Soos. Enhanced gaussian elimination in DPLL-based SAT solvers. In Prag-
matics of SAT, Edinburgh, Scotland, UK, July 2010.

17. Naoyuki Tamura and Mutsunori Banbara. Sugar: A csp to sat translator based on
order encoding. www.cril.univ-artois.fr/CPAI06/descriptionSolvers/Sugar.
pdf.

www.cril.univ-artois.fr/CPAI06/descriptionSolvers/Sugar.pdf
www.cril.univ-artois.fr/CPAI06/descriptionSolvers/Sugar.pdf

	A More Efficient Parallel Unit Propagation
	Norbert Manthey

