
1Foundations of Logic Programming Procedural Interpretation

Chapter 3

Procedural Interpretation

2Foundations of Logic Programming Procedural Interpretation

Outline

Defining programs formally

Introducing the computation method SLD-resolution

Discussing various choices and their impact

3Foundations of Logic Programming Procedural Interpretation

Atoms, and Term Bases

TUF,V term universe (V Variables, F function symbols)

∏ ranked alphabet of predicate symbols

Term base TB∏,F,V (over ∏, F, and V) is smallest set A of atoms with

1. p  A, if p  ∏(0)

2. p(t1, ..., tn)  A, if p ∏(n) with n  1 and t1, ..., tn  UF,V

4Foundations of Logic Programming Procedural Interpretation

Queries and Programs

query :Û finite sequence B1, ..., Bn of atoms

empty query :Û empty sequence (denoted by □) of atoms

H ← B (definite) clause :Û H atom (“head of clause”), B query (“body of clause”)

H ← □ unit clause (also called: fact; standard notation: H ←)

(definite) program :Û finite set of clauses

5Foundations of Logic Programming Procedural Interpretation

Intuitive Meaning of Clauses and Queries

A clause H ← B1, ..., Bn can be understood as the formula

x1, ..., xk(B1 ∧ ... ∧ Bn → H)

where x1, ..., xk are the variables occurring in H ← B1, ..., Bn.

(Thus a unit clause H ← encodes x1, ..., xk H)

A query A1, ..., An can be understood as the formula

x1, ..., xk(A1 ∧ ... ∧ An)

where x1, ..., xk are the variables occurring in A1, ..., An.

(Thus the empty query □ is equivalent to true)

6Foundations of Logic Programming Procedural Interpretation

Negated Queries and Definite Goals

Be careful:

 ¬x1, ..., xk(A1 ∧ ... ∧ An) (negated query)

Û x1, ..., xk¬(A1 ∧ ... ∧ An)

Û x1, ..., xk false ∨ ¬(A1 ∧ ... ∧ An)

Û x1, ..., xk false ← (A1 ∧ ... ∧ An) (constraint in the sense of CLP)

7Foundations of Logic Programming Procedural Interpretation

What is Being Computed?

A program P can be interpreted as a set of axioms.

A query Q can be interpreted as the request for finding an instance Q which is
a logical consequence of P.

A successful derivation provides such a . In this way, the derivation is a proof
of Q.

To be continued in Chapter 4: Declarative Interpretation

8Foundations of Logic Programming Procedural Interpretation

How Do We Compute?

A computation is a sequence of derivation steps.

In each step:

1. an atom A is selected in the current query and a program clause H ← B is chosen.

2. If A and H are unifiable, then A is replaced by B and an MGU of A and H is applied to
 the resulting query.

The computation is successful if it ends with the empty query.

The resulting answer substitution  is obtained by combining the MGUs of each step.

9Foundations of Logic Programming Procedural Interpretation

An SLD-Derivation Step (No Variables)

SLD = Selection rule driven Linear resolution for Definite clauses

Consider

- a program P

- a query A, B, C

- a clause B ← B  P

B is the selected atom

The resulting query A, B, C is called the SLD resolvent

Notation: A, B, C � A, B, C

10Foundations of Logic Programming Procedural Interpretation

Example Ground Program and Query

happy :- sun, holidays.
happy :- snow, holidays.
snow :- cold, precipitation.
cold :- winter.
precipitation :- holidays.
winter.
holidays.

| ?- happy.

11Foundations of Logic Programming Procedural Interpretation

An SLD-Derivation Step (General Case)

Consider

- a program P

- a query A, B, C

- a clause c  P

- a variant H ← B of c variable disjoint with the query

- an MGU  of B and H

SLD-resolvent of A, B, C and c wrt. B with MGU  :Û (A, B, C)

SLD-derivation step :Û A, B, C (A, B, C)

input clause :Û variant H ← B

We say: “clause c applicable to atom B”

�
c

θ

12Foundations of Logic Programming Procedural Interpretation

Example Program and Query

add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

mul(X,0,0).
mul(X,s(Y),Z) :- mul(X,Y,U), add(X,U,Z).

| ?- mul(s(s(0)),s(s(0)),V).

| ?- mul(V,W,s(s(0))).

13Foundations of Logic Programming Procedural Interpretation

The 4 Steps of Resolving Query and Clause

1. Selection: Select an atom in the query.

2. Renaming: Rename (if necessary) the clause.

3. Instantiation: Instantiate query and clause by an MGU of the selected atom and
the head of the clause.

4. Replacement: Replace the instance of the selected atom by the instance of
the body of the clause.

14Foundations of Logic Programming Procedural Interpretation

SLD-Derivations

A maximal sequence of SLD-derivation steps

is an SLD-derivation of P  {Q0}

:Û

Q0, ..., Qn+1, ... are queries, each empty or with one atom selected in it;

1, ..., n+1, ... are substitutions;

c1, ..., cn+1, ... are clauses of P;

for every SLD-derivation step, standardization apart holds.

Q0�
1

c1

Q1 ...Qn�
cn1

n1

Qn1 ...

15Foundations of Logic Programming Procedural Interpretation

Standardization Apart

The input clause is variable disjoint from the initial query and from the substitutions
and input clauses used at earlier steps.

Formally:

for i  1, where c'i is the input clause used in the i-th SLD-derivation step .

Var c ' i ∩Var Q0∪ ∪
i−1

j =1
Var  j ∪Var c ' j =;

Q i−1�
i

c i

Q i

16Foundations of Logic Programming Procedural Interpretation

Result of a Derivation

Let be a finite SLD-derivation.

 successful :Û Qn = □

 failed :Û Qn  □ and no clause is applicable to selected atom of Qn

Let  be successful.

computed answer substitution (CAS) of Q0 (w.r.t. ) : (1 ··· n) | Var(Q
0
)

computed instance of Q0 :Û Q01 ··· n

=Q0�
1

Q1 ...�
n

Qn

17Foundations of Logic Programming Procedural Interpretation

Choices

In each SLD-derivation step the following four choices are made.

1. Choice of the renaming

2. Choice of the MGU

3. Choice of the selected atom in the query

4. Choice of the program clause

How do they influence the result?

18Foundations of Logic Programming Procedural Interpretation

Resultants: What is Proved After a Step?

resultant associated with :Û implication Q ← Q1

Consider

- a program P

- a resultant R = Q ← A, B, C

- a clause c

- a variant H ← B of c variable disjoint with R

- an MGU  of B and H

SLD-resolvent of resultant R and c w.r.t. B with MGU  :Û (Q ← A, B, C)

SLD-resultant step :Û Q ← A, B, C (Q ← A, B, C)

Q�


Q1

�
c



19Foundations of Logic Programming Procedural Interpretation

Resultants and SLD-Derivations

Consider an SLD-derivation

For i  0

 Ri :Û Q01 ··· i ← Qi

is called the resultant of level i of .

The resultant Ri describes what is “proved” after i derivation steps; in particular:

R0 : Q0 ← Q0

Rn : Q01 ··· n if Qn = □ (because □ ≙ “true”)

=Q0�
1

c1

Q1...Qn�
cn1

n1

Qn1...

20Foundations of Logic Programming Procedural Interpretation

Propagation (I)

The selected atom of a resultant Q ← Qi is defined as the atom selected in Qi.

Lemma 3.12

Suppose that and are two SLD-resultant steps such that

- R is an instance of R',

- in R and R' atoms in the same positions are selected.

Then R1 is an instance of R'1.

Proof: see [Apt97, page 55]

R�


c

R1 R ' �
 '

c

R ' 1

21Foundations of Logic Programming Procedural Interpretation

Propagation (II)

Corollary 3.13

Suppose that and are two SLD-derivation steps such that

- Q is an instance of Q',

- in Q and Q' atoms in the same positions are selected.

Then Q1 is an instance of Q'1.

Q�


c

Q1 Q' �
 '

c

Q ' 1

22Foundations of Logic Programming Procedural Interpretation

Similar SLD-Derivations

Consider two (initial fragments of) SLD-derivations

and

 and ' are similar

:Û

length () = length ('),

Q0 and Q'0 are variants,

in Qi and Q'i atoms in the same positions are selected (i  [0, ..., n])

=Q0�
1

Q1...Qn�
n1

Qn1...

 '=Q '0�
 '1

Q ' 1...Q ' n�
 ' n1

Q ' n1 ...

cn+1c1

cn+1
c1

23Foundations of Logic Programming Procedural Interpretation

A Theorem on Variants

Theorem 3.18

Consider two similar SLD-derivations , '. Then for every i  0, the resultants
Ri and R'i of level i of  and ', respectively, are variants of each other.

Proof.

Base Case (i = 0): R0 = Q0 ← Q0 R'0 = Q'0 ← Q'0

Induction Case (i → i + 1):

 Ri variant of R'i
implies Ri instance of R'i and vice versa

implies Ri+1 instance of R'i+1 and vice versa (Lemma 3.12)

implies Ri+1 variant of R'i+1

R i�
i1

R i 1 R ' i �
 ' i1

R ' i1
ci+1 ci+1

24Foundations of Logic Programming Procedural Interpretation

Answer Substitutions of Similar Derivations

Corollary 3.19

Consider two similar successful SLD-derivations of Q0 with CAS  and . Then
Q0 and Q0 are variants of each other.

Proof. By Theorem 3.18 applied to the final resultants Q0 ← □ and Q0 ← □ of
these SLD-derivations.

This shows that choice 1 (choice of a renaming) and choice 2 (choice of an MGU)
have no influence – modulo renaming – on the statement proved by a successful
SLD-derivation.

25Foundations of Logic Programming Procedural Interpretation

Selecting Atoms in Queries

Let INIT be the set of all initial fragments of all possible SLD-derivations in which

the last query in non-empty.

A selection rule is a function which for every <  INIT yields an occurrence of an

atom in the last query of <.

An SLD-derivation  is via a selection rule R if for every initial fragment < of 
ending with a non-empty query Q, R(<) is the selected atom of Q.

PROLOG employs the simple selection rule “Select the leftmost atom”.

26Foundations of Logic Programming Procedural Interpretation

Switching Lemma

Lemma 3.32

Consider an SLD-derivation

where

Qn includes two atoms A1 and A2

A1 is the selected atom of Qn

A2n+1 is the selected atom of Qn+1

Then for some Q'n+1, 'n+1, and 'n+2

where

A2 is the selected atom of Qn

A1'n+1 is the selected atom of Q'n+1

'n+1'n+2 = n+1n+2

Proof: see [Apt97, page 65]

=Q0�
1

c1

Q1 ...Qn�
cn1

n1

Qn1�
cn2

n2

Qn2 ...

 '=Q0�
1

c1

Q1 ...Qn�
c n2

 ' n1

Q ' n1�
cn1

 'n2

Qn2 ...

27Foundations of Logic Programming Procedural Interpretation

Independence of Selection Rule

Theorem 3.33

Let  be a successful SLD-derivation of P  {Q0}. Then for every selection rule R
there exists a successful SLD-derivation ' of P  {Q0} via R such that

CAS of Q0 (w.r.t. ) = CAS of Q0 (w.r.t. '),

 and ' are of the same length.

This shows that choice 3 (choice of a selected atom) has no influence in case of
successful queries.

28Foundations of Logic Programming Procedural Interpretation

Objectives

Defining programs formally

Introducing the computation method SLD-resolution

Discussing various choices and their impact

29Foundations of Logic Programming Procedural Interpretation

Proof Sketch of Theorem 3.33

Induction on i:

assume “ is via R up to Qi-1”

R selects A in Qi

Ai+1 ... i+j is selected atom of Qi+j in  for some j > 1 ( successful !)

 
 Qi ... Qi+j-1 Qi+j ...

 apply Switching Lemma 3.32 j-times

=Q0�
1

...�
n

Qn=□

30Foundations of Logic Programming Procedural Interpretation

SLD-Trees Visualize Search Space

SLD-tree for P  {Q0} via selection rule R

:Û

the branches are SLD-derivations of P  {Q0} via R

every node Q with selected atom A has exactly one descendant for every
clause c of P with is applicable to A.
This descendant is a resolvent of Q and c w.r.t. A.

SLD-tree successful :Û tree contains the node □

SLD-tree finitely failed :Û tree is finite and not successful

SLD-tree via “leftmost selection rule” corresponds to Prolog's search space

31Foundations of Logic Programming Procedural Interpretation

Variant Independence

Selection rule R variant independent

:Û

in all initial fragments of SLD-derivations which are similar (c.f. Slide 22), R
chooses the atom in the same position in the last query.

Selection rule “select leftmost atom” is variant independent

Selection rule “select leftmost atom if query contains variable x, otherwise
select rightmost atom” is variant dependent

32Foundations of Logic Programming Procedural Interpretation

The Branch Theorem

Theorem 3.38

Consider an SLD-tree T for P  {Q0} via a variant independent selection rule R.
Then every SLD-derivation of P  {Q0} via R is similar to a branch in T.

This shows that choice 4 (choice of a program clause) has no influence on the

search space as a whole.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

