Chapter 3

Procedural Interpretation

Outline

- Defining programs formally
- Introducing the computation method SLD-resolution
- Discussing various choices and their impact

Atoms, and Term Bases

- TU_{F,V} term universe (V Variables, F function symbols)

Term base $TB_{\prod,F,V}$ (over \prod, F , and V) is smallest set A of atoms with

- 1. $p \in A$, if $p \in \prod^{(0)}$
- 2. $p(t_1, ..., t_n) \in A$, if $p \in \prod^{(n)}$ with $n \ge 1$ and $t_1, ..., t_n \in U_{F,V}$

Queries and Programs

- query : \Leftrightarrow finite sequence $B_1, ..., B_n$ of atoms
- empty query :⇔ empty sequence (denoted by □) of atoms
- $H \leftarrow \underline{B}$ (definite) clause : $\Leftrightarrow H$ atom ("head of clause"), \underline{B} query ("body of clause")
- $H \leftarrow \Box$ unit clause (also called: fact; standard notation: $H \leftarrow$)
- (definite) program :⇔ finite set of clauses

Intuitive Meaning of Clauses and Queries

A clause $H \leftarrow B_1, ..., B_n$ can be understood as the formula

$$\forall x_1, ..., x_k(B_1 \wedge ... \wedge B_n \rightarrow H)$$

where $x_1, ..., x_k$ are the variables occurring in $H \leftarrow B_1, ..., B_n$. (Thus a unit clause $H \leftarrow$ encodes $\forall x_1, ..., x_k H$)

A query $A_1, ..., A_n$ can be understood as the formula

$$\exists x_1, ..., x_k (A_1 \wedge ... \wedge A_n)$$

where $x_1, ..., x_k$ are the variables occurring in $A_1, ..., A_n$.

(Thus the empty query □ is equivalent to *true*)

Negated Queries and Definite Goals

Be careful:

$$\neg \exists x_1, ..., x_k (A_1 \land ... \land A_n)$$
 (negated query)
$$\Leftrightarrow \forall x_1, ..., x_k \neg (A_1 \land ... \land A_n)$$

$$\Leftrightarrow \forall x_1, ..., x_k \text{ false } \lor \neg (A_1 \land ... \land A_n)$$

$$\Leftrightarrow \forall x_1, ..., x_k \text{ false } \leftarrow (A_1 \land ... \land A_n) \text{ (constraint in the sense of CLP)}$$

What is Being Computed?

- A program P can be interpreted as a set of axioms.
- A query Q can be interpreted as the request for finding an instance Qθ which is a logical consequence of P.
- A successful derivation provides such a θ. In this way, the derivation is a proof of Qθ.

To be continued in Chapter 4: Declarative Interpretation

How Do We Compute?

- A computation is a sequence of derivation steps.
- In each step:
 - 1. an atom A is selected in the current query and a program clause $H \leftarrow \underline{B}$ is chosen.
 - 2. If A and H are unifiable, then A is replaced by <u>B</u> and an MGU of A and H is applied to the resulting query.
- The computation is successful if it ends with the empty query.
- The resulting answer substitution θ is obtained by combining the MGUS of each step.

An SLD-Derivation Step (No Variables)

SLD = Selection rule driven Linear resolution for Definite clauses

Consider

- a program P
- a query <u>A</u>, B, <u>C</u>
- a clause $B \leftarrow \underline{B} \in P$
- B is the selected atom
- The resulting query <u>A</u>, <u>B</u>, <u>C</u> is called the SLD resolvent
- Notation: <u>A</u>, B, <u>C</u> ⇒ <u>A</u>, <u>B</u>, <u>C</u>

Example Ground Program and Query

```
happy :- sun, holidays.
happy :- snow, holidays.
snow :- cold, precipitation.
cold :- winter.
precipitation :- holidays.
winter.
holidays.

| ?- happy.
```

An SLD-Derivation Step (General Case)

Consider

- a program P
- a query <u>A</u>, B, <u>C</u>
- a clause $c \in P$
- a variant $H \leftarrow \underline{B}$ of c variable disjoint with the query
- an мgu θ of B and H

SLD-resolvent of \underline{A} , B, \underline{C} and c wrt. \underline{B} with MGU θ : \Leftrightarrow (\underline{A} , \underline{B} , \underline{C}) θ SLD-derivation step: \Leftrightarrow \underline{A} , B, \underline{C} \Longrightarrow (\underline{A} , \underline{B} , \underline{C}) θ input clause: \Leftrightarrow variant $\underline{H} \leftarrow \underline{B}$

We say: "clause c applicable to atom B"

Example Program and Query

```
add(X,0,X).
add(X,s(Y),s(Z)) :- add(X,Y,Z).

mul(X,0,0).
mul(X,s(Y),Z) :- mul(X,Y,U), add(X,U,Z).

| ?- mul(s(s(0)),s(s(0)),V).
```

The 4 Steps of Resolving Query and Clause

- 1. Selection: Select an atom in the query.
- 2. Renaming: Rename (if necessary) the clause.
- 3. Instantiation: Instantiate query and clause by an MGU of the selected atom and the head of the clause.
- 4. Replacement: Replace the instance of the selected atom by the instance of the body of the clause.

SLD-Derivations

A maximal sequence of SLD-derivation steps

$$Q_0 \underset{c_1}{\Longrightarrow} Q_1 \dots Q_n \underset{c_{n+1}}{\Longrightarrow} Q_{n+1} \dots$$

is an SLD-derivation of $P \cup \{Q_0\}$

∶⇔

- $Q_0, ..., Q_{n+1}, ...$ are queries, each empty or with one atom selected in it;
- $\theta_1, ..., \theta_{n+1}, ...$ are substitutions;
- $c_1, ..., c_{n+1}, ...$ are clauses of P;
- for every SLD-derivation step, standardization apart holds.

Standardization Apart

The input clause is variable disjoint from the initial query and from the substitutions and input clauses used at earlier steps.

Formally:

$$Var(c'_i) \cap \left(Var(Q_0) \cup \bigcup_{j=1}^{i-1} (Var(\theta_j) \cup Var(c'_j)) \right) = \emptyset$$

for $i \ge 1$, where c'_i is the input clause used in the *i*-th SLD-derivation step $Q_{i-1} \stackrel{\circ_i}{\Longrightarrow} Q_i$

Result of a Derivation

Let $\xi = Q_0 \stackrel{\theta_1}{\Longrightarrow} Q_1 ... \stackrel{\theta_n}{\Longrightarrow} Q_n$ be a finite SLD-derivation.

- ξ successful : $\Leftrightarrow Q_n = \Box$
- ξ failed : $\Leftrightarrow Q_n \neq \Box$ and no clause is applicable to selected atom of Q_n

Let ξ be successful.

- computed answer substitution (CAS) of Q_0 (w.r.t. ξ) : $\Leftrightarrow (\theta_1 \cdots \theta_n) \mid_{Var(Q_0)}$
- computed instance of $Q_0 : \Leftrightarrow Q_0 \theta_1 \cdots \theta_n$

Choices

In each SLD-derivation step the following four choices are made.

- 1. Choice of the renaming
- 2. Choice of the MGU
- 3. Choice of the selected atom in the query
- 4. Choice of the program clause

How do they influence the result?

Resultants: What is Proved After a Step?

resultant associated with $Q \stackrel{\theta}{\Longrightarrow} Q_1 :\Leftrightarrow \text{implication } Q\theta \leftarrow Q_1$

Consider

- a program P
- a resultant $R = Q \leftarrow \underline{A}, B, \underline{C}$
- a clause c
- a variant $H \leftarrow \underline{B}$ of c variable disjoint with R
- an MGU θ of B and H

SLD-resolvent of resultant R and c w.r.t. B with MGU θ : \Leftrightarrow ($Q \leftarrow \underline{A}, \underline{B}, \underline{C}$) θ

SLD-resultant step :
$$\Leftrightarrow$$
 Q \leftarrow $\underline{\underline{A}}$, B, $\underline{\underline{C}} \Longrightarrow_{c}^{\theta} (Q \leftarrow \underline{\underline{A}}, \underline{\underline{B}}, \underline{\underline{C}})\theta$

Resultants and SLD-Derivations

Consider an SLD-derivation

$$\xi = Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \dots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \dots$$

For $i \ge 0$

$$R_i : \Leftrightarrow Q_0 \theta_1 \cdots \theta_i \leftarrow Q_i$$

is called the resultant of level *i* of ξ.

The resultant R_i describes what is "proved" after i derivation steps; in particular:

- $R_0: Q_0 \leftarrow Q_0$
- $R_n: Q_0\theta_1 \cdots \theta_n$ if $Q_n = \square$ (because $\square \triangleq$ "true")

Propagation (I)

The selected atom of a resultant $Q \leftarrow Q_i$ is defined as the atom selected in Q_i .

Lemma 3.12

Suppose that $R \stackrel{\theta}{\underset{c}{\Longrightarrow}} R_1$ and $R' \stackrel{\theta'}{\underset{c}{\Longrightarrow}} R'_1$ are two SLD-resultant steps such that

- R is an instance of R',
- in R and R' atoms in the same positions are selected.

Then R_1 is an instance of R'_1 .

Proof: see [Apt97, page 55]

Propagation (II)

Corollary 3.13

Suppose that $Q \stackrel{\theta}{\underset{c}{\Longrightarrow}} Q_1$ and $Q' \stackrel{\theta'}{\underset{c}{\Longrightarrow}} Q'_1$ are two SLD-derivation steps such that

- Q is an instance of Q',
- in Q and Q' atoms in the same positions are selected.

Then Q_1 is an instance of Q'_1 .

Similar SLD-Derivations

Consider two (initial fragments of) SLD-derivations

$$\xi = Q_0 \underset{c_1}{\Longrightarrow} Q_1 \dots Q_n \underset{c_{n+1}}{\Longrightarrow} Q_{n+1} \dots$$

and

$$\xi' = Q'_0 \xrightarrow{\theta'_1} Q'_1 \dots Q'_n \xrightarrow{\theta'_{n+1}} Q'_{n+1} \dots$$

 ξ and ξ' are similar

∶⇔

- length (ξ) = length (ξ'),
- Q₀ and Q'₀ are variants,
- in Q_i and Q'_i atoms in the same positions are selected ($i \in [0, ..., n]$)

A Theorem on Variants

Theorem 3.18

Consider two similar SLD-derivations ξ , ξ' . Then for every $i \geq 0$, the resultants R_i and R'_i of level i of ξ and ξ' , respectively, are variants of each other.

Proof.

Base Case (
$$i = 0$$
): $R_0 = Q_0 \leftarrow Q_0$ $R'_0 = Q'_0 \leftarrow Q'_0$

Induction Case
$$(i \rightarrow i + 1)$$
: $R_i \stackrel{\theta_{i+1}}{\Longrightarrow} R_{i+1}$ $R'_i \stackrel{\theta'_{i+1}}{\Longrightarrow} R'_{i+1}$

$$R_i$$
 variant of R'_i

implies R_i instance of R'_i and vice versa

implies R_{i+1} instance of R'_{i+1} and vice versa (Lemma 3.12)

implies R_{i+1} variant of R'_{i+1}

Answer Substitutions of Similar Derivations

Corollary 3.19

Consider two similar successful SLD-derivations of Q_0 with $CAS \theta$ and η . Then $Q_0\theta$ and $Q_0\eta$ are variants of each other.

Proof. By Theorem 3.18 applied to the final resultants $Q_0\theta \leftarrow \Box$ and $Q_0\eta \leftarrow \Box$ of these SLD-derivations.

This shows that choice 1 (choice of a renaming) and choice 2 (choice of an MGU) have no influence – modulo renaming – on the statement proved by a successful SLD-derivation.

Selecting Atoms in Queries

Let *INIT* be the set of *all* initial fragments of *all* possible SLD-derivations in which the last query in non-empty.

A selection rule is a function which for every $\xi^{<} \in INIT$ yields an occurrence of an atom in the last query of $\xi^{<}$.

An SLD-derivation ξ is via a selection rule \mathcal{R} if for every initial fragment $\xi^{<}$ of ξ ending with a non-empty query Q, $\mathcal{R}(\xi^{<})$ is the selected atom of Q.

PROLOG employs the simple selection rule "Select the leftmost atom".

Switching Lemma

Lemma 3.32

Consider an SLD-derivation $\xi = Q_0 \stackrel{\theta_1}{\underset{c_1}{\Longrightarrow}} Q_1 \dots Q_n \stackrel{\theta_{n+1}}{\underset{c_{n+1}}{\Longrightarrow}} Q_{n+1} \stackrel{\theta_{n+2}}{\underset{c_{n+2}}{\Longrightarrow}} Q_{n+2} \dots$ where

- Q_n includes two atoms A₁ and A₂
- A₁ is the selected atom of Q_n
- $A_2\theta_{n+1}$ is the selected atom of Q_{n+1}

Then for some Q'_{n+1} , θ'_{n+1} , and θ'_{n+2} $\xi' = Q_0 \underset{c_1}{\overset{\theta_1}{\Longrightarrow}} Q_1 \dots Q_n \underset{c_{n+2}}{\overset{\theta'_{n+1}}{\Longrightarrow}} Q'_{n+1} \underset{c_{n+1}}{\overset{\theta'_{n+2}}{\Longrightarrow}} Q_{n+2} \dots$ where

- A₂ is the selected atom of Q_n
- $A_1\theta'_{n+1}$ is the selected atom of Q'_{n+1}
- $\bullet \theta'_{n+1}\theta'_{n+2} = \theta_{n+1}\theta_{n+2}$

Proof: see [Apt97, page 65]

Independence of Selection Rule

Theorem 3.33

Let ξ be a successful SLD-derivation of $P \cup \{Q_0\}$. Then for every selection rule \mathcal{R} there exists a successful SLD-derivation ξ' of $P \cup \{Q_0\}$ via \mathcal{R} such that

- CAS of Q_0 (w.r.t. ξ) = CAS of Q_0 (w.r.t. ξ '),
- ξ and ξ' are of the same length.

This shows that choice 3 (choice of a selected atom) has no influence in case of successful queries.

Objectives

- Defining programs formally
- Introducing the computation method SLD-resolution
- Discussing various choices and their impact

Proof Sketch of Theorem 3.33

$$\xi = Q_0 \stackrel{\theta_1}{\Longrightarrow} ... \stackrel{\theta_n}{\Longrightarrow} Q_n = \Box$$

Induction on *i*:

assume " ξ is via \mathcal{R} up to Q_{i-1} "

 \mathcal{R} selects A in Q_i

 $A\theta_{j+1} \dots \theta_{j+j}$ is selected atom of Q_{j+j} in ξ for some j > 1 (ξ successful!)

SLD-Trees Visualize Search Space

SLD-tree for $P \cup \{Q_0\}$ via selection rule \mathcal{R} :

- the branches are SLD-derivations of $P \cup \{Q_0\}$ via \mathcal{R}
- every node Q with selected atom A has exactly one descendant for every clause c of P with is applicable to A.
 This descendant is a resolvent of Q and c w.r.t. A.

SLD-tree successful :⇔ tree contains the node □

SLD-tree finitely failed :⇔ tree is finite and not successful

SLD-tree via "leftmost selection rule" corresponds to Prolog's search space

Variant Independence

Selection rule R variant independent

∶⇔

in all initial fragments of SLD-derivations which are similar (c.f. Slide 22), \mathcal{R} chooses the atom in the same position in the last query.

- Selection rule "select leftmost atom" is variant independent
- Selection rule "select leftmost atom if query contains variable x, otherwise select rightmost atom" is variant dependent

The Branch Theorem

Theorem 3.38

Consider an SLD-tree \mathcal{T} for $P \cup \{Q_0\}$ via a variant independent selection rule \mathcal{R} . Then every SLD-derivation of $P \cup \{Q_0\}$ via \mathcal{R} is similar to a branch in \mathcal{T} .

This shows that choice 4 (choice of a program clause) has no influence on the search space as a whole.