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Review: Centrality

Centrality tries to identify the most important nodes in a network

® Many possible criteria (nodes from/to/through which something flows, emphasising
longer or shorter distances travelled, possibly considering only certain paths,
maybe using additional external criteria or weights)

® Putting importance on in-flow: in-degree centrality, eigenvector centrality, Katz
centrality, PageRank

Simple recursive approximation for eigenvector-based measures:
e Start with any positive vector, and multiply powers of the matrix with it

® Pure form only meaningful for irreducible matrices (strongly connected graphs), but
can be relaxed (Katz, PageRank)

® Typically converges quickly, and can be parallelised
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Page vs. Katz

We can see strong parallels between the two algorithms:
® Both are all-paths criteria based on the number of paths leading to a node
® Both use a parameter to reduce the impact of long paths
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Page vs. Katz

We can see strong parallels between the two algorithms:
® Both are all-paths criteria based on the number of paths leading to a node

® Both use a parameter to reduce the impact of long paths

The main difference is that Katz propagates the full (discounted) weight to all
successors of a node, whereas PageRank (like eigenvector centrality) splits the weight
among all successors:
e Katz centrality: “A node is important if it is highly linked or if it is linked from other
important nodes.”

® PageRank: “A node is important if it is highly linked or if it is linked from other
important nodes that do not link to many other pages.”

But maybe the most important difference is that one of the two has been famed as the secret of Google’s success ...
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Shortest paths
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Closeness

Previous centrality measures emphasised numbers of (highly valued) paths, and
considered all available paths (including cycles).

In some applications, it is more meaningful to consider shortest paths.

Markus Krétzsch, 28th Jan 2020 Knowledge Graphs slide 5 of 27



Closeness

Previous centrality measures emphasised numbers of (highly valued) paths, and
considered all available paths (including cycles).

In some applications, it is more meaningful to consider shortest paths.

In a (strongly) connected (di)graph with N nodes, we can calculate the average distance
of a node i to all other nodes (excluding itself) as

2z dist(. j)
N-1

where dist(i, j) is the length of the shortest path from i to j.
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Closeness

Previous centrality measures emphasised numbers of (highly valued) paths, and
considered all available paths (including cycles).

In some applications, it is more meaningful to consider shortest paths.

In a (strongly) connected (di)graph with N nodes, we can calculate the average distance
of a node i to all other nodes (excluding itself) as

2z dist(. j)
N-1

where dist(i, j) is the length of the shortest path from i to j.

The corresponding centrality uses the inverse to assign higher values to nodes closer to
the rest:

Definition 14.1: The closeness centrality of a node i in a strongly connected

. . . N—-1
graph with N nodes is defined as PR
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Closeness centrality

Limitations:

* Many networks have very small diameters, i.e., every node is rather close to every
other node. This means that centrality scores are also close

® |n particular, the most central node may not have a significant margin to other
high-ranked nodes (which is different, e.g., in typical eigenvector results)

* Not defined for graphs that are not strongly connected (“infinite” distance to just
one node would lead to centrality 0)
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Closeness centrality

Limitations:

* Many networks have very small diameters, i.e., every node is rather close to every
other node. This means that centrality scores are also close

® |n particular, the most central node may not have a significant margin to other
high-ranked nodes (which is different, e.g., in typical eigenvector results)

* Not defined for graphs that are not strongly connected (“infinite” distance to just
one node would lead to centrality 0)

Possible solutions:

® Use closeness centrality on graphs where distance is more meaningful (e.g.,
closeness in a road network might indicate good locations for distribution centres)

® Restrict to largest strongly connected component (if very large and dominant) or
assign a maximal N-step distance (rather than o) to unconnected nodes
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Harmonic centrality

Another approach to solve the problem with disconnected graphs is to modify
computation:

Definition 14.2: The harmonic centrality of a node i in a strongly connected
graph with N nodes is defined as ¥, m

Note: Nodes without a connecting path can be considered to have infinite distance. This
only affects one term of the sum, not the whole result.
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Betweenness

Idea: Measure how relevant a vertex is for mediating flows along short paths

Example 14.3: In a communication network (e.g., the Internet), some nodes
(routers) can spy on more traffic than others, since they are on the best connec-
tion between more users.

We will therefore define centrality as follows:

“A node is important if it is on the shortest path between many pairs of other nodes.”
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Betweenness centrality

Definition 14.4: In a graph with N nodes, the betweenness centrality of a node k
is given by the sum
1 sp;;(k)
(N-DIN-2)

i, itk Py

where sp;; is the number of shortest paths from i to j, and sp;;(k) is the number of
such paths through «.

Notes:
® There might be several, partly overlapping shortest paths between i and j.

® (N - 1)(N —2) is the number of pairs of distinct nodes i and j that are both unequal
to k; this is a normalisation factor.

® High betweenness scores are achieved by the central nodes of star-shaped
graphs; low scores occur, e.g., for dead ends (which are on no shortest path at all)
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Betweenness: uses and limits

Betweenness is robustly applicable, but different from most other metrics, since nodes
with high betweenness might be:

® connected to only few other nodes,
e far from more densely connected areas, and
® not directly or indirectly related to nodes of similarly high importance

~» application scenarios for betweenness are frequent, but completely different from
scenarios where other metrics might be used.
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Betweenness: uses and limits

Betweenness is robustly applicable, but different from most other metrics, since nodes
with high betweenness might be:

® connected to only few other nodes,
e far from more densely connected areas, and

® not directly or indirectly related to nodes of similarly high importance

~» application scenarios for betweenness are frequent, but completely different from
scenarios where other metrics might be used.

Implementation: this measure is calculated in the direct (laborious) way, iterating over

all pairs of nodes and all shortest paths to compute the sum. This is usually cubic time,
but can go down to quadratic for sparse graphs.
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Overview of centrality criteria

® Degree centrality: “A node is important if it is highly linked.”

* Eigenvalue centrality: “A node is important if it is linked from other important
nodes.”

* Katz centrality: “A node is important if it is highly linked or if it is linked from other
important nodes.”

® PageRank: “A node is important if it is highly linked or if it is linked from other
important nodes that do not link many other pages.”

® Closeness centrality: “A node is important if it is close to many other nodes.”

® Betweenness centrality: “A node is important if it is on the shortest path between
many pairs of other nodes.”
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Finding communities
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Communities in networks
Intuition: Many graphs are not uniform but can be viewed as consisting of several
(possibly overlapping) communities
* Nodes of the same community should be more likely to be connected than nodes
in different communities.
® |f communities are disjoint, then the graph consists of relatively dense graphs with
only relatively few connections in between

Example 14.5: The term comes from social network analysis. Indeed, people
that share goals or interests often form communities.
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Communities in networks
Intuition: Many graphs are not uniform but can be viewed as consisting of several
(possibly overlapping) communities
* Nodes of the same community should be more likely to be connected than nodes
in different communities.
® |f communities are disjoint, then the graph consists of relatively dense graphs with
only relatively few connections in between

Example 14.5: The term comes from social network analysis. Indeed, people
that share goals or interests often form communities.

Motivation:
® Community structures can reveal insights into how networks emerged
® Characteristics of one community can be very different from the characteristics of
another, or of the overall graph
~ knowing some community structure improves our understanding and makes many

algorithms more effective
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The method of Girvan and Newman

Idea:
® High betweenness is typical for nodes that are “between” communities
® Betweenness can also be computed for edges
~» Decompose networks into communities by removing edges of high betweenness
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The method of Girvan and Newman

Idea:
® High betweenness is typical for nodes that are “between” communities
® Betweenness can also be computed for edges
~» Decompose networks into communities by removing edges of high betweenness

Girvan-Newman Algorithm:

Repeat

Compute betweenness for all edges

Remove edge with largest betweenness value

Detect connected components of remaining graph (“communities”)
Until “enough communities have been found”

The GN algorithm actually produces a hierarchical clustering of a graph:
it decomposes the graph into smaller and smaller clusters, down to single nodes.
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GN algorithm: Example

We consider an undirected network:
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GN algorithm: Example

We consider an undirected network:
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GN algorithm: Example

We consider an undirected network:

@i\% AN

: ®
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GN algorithm: Example

We consider an undirected network:

@i\% ras

: ®
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GN algorithm: Example

We consider an undirected network:

@i\% ras

: ®
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Hierarchical clustering

Like any hierarchical clustering, the output of betweenness-based clustering can be
visualised in a dendrogram that shows how connected components (communities)

change when removing edges:

O—O—0)

EL\T PAN
astastrald T

The possible clusters can be read off this tree structure (at the desired level). The
edge-removal process can be continued until each community has only one member.

2
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Approximating betweenness

The computation of betweenness for all edges is time-consuming:

® For all possible source vertices s
® and for all possible target vertices t:
e find all shortest paths from s to ¢
® and add their relative contributions to the edges.
~>» requires n> shortest-path computations — way too inefficient
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Approximating betweenness

The computation of betweenness for all edges is time-consuming:
® For all possible source vertices s
e and for all possible target vertices ¢:
e find all shortest paths from s to ¢
® and add their relative contributions to the edges.

~>» requires n> shortest-path computations — way too inefficient

Better algorithms exist:
® For all possible source vertices s
¢ find all shortest paths from s to any other r using breadth-first search
® and add their relative contributions to the edges.

~» still too slow on large graphs
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Approximating betweenness

The computation of betweenness for all edges is time-consuming:
® For all possible source vertices s
e and for all possible target vertices ¢:
e find all shortest paths from s to ¢
® and add their relative contributions to the edges.
~>» requires n> shortest-path computations — way too inefficient

Better algorithms exist:
® For all possible source vertices s
¢ find all shortest paths from s to any other r using breadth-first search
® and add their relative contributions to the edges.

~» still too slow on large graphs

Approximate solutions may help:
® Select a subset of vertices by random sampling, and
® perform the breadth-first search only from those sources
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When to stop?

The GN algorithm does not define at which level the clustering is most meaningful.
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When to stop?

The GN algorithm does not define at which level the clustering is most meaningful.

Possible solutions:

® Define a target number of communities and stop as soon as there are at least that
many disconnected components.
~» requires prior knowledge on network structure

® Define a maximum size for communities and stop as soon as all communities are
below this size.
~>» requires a very specific network structure and prior knowledge to make sense

® Define a measurement for community quality and stop as soon as the produced
communities are good enough.
~» requires a meaningful quality criterion
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Modularity

Goal: Given a hypothetical community partitioning, estimate its quality.!

Idea: Communities should be more densely connected internally than random graphs

Modularity: “# edges in communities — expected # if edges were random”

"We will restrict to undirected graphs here.
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Modularity

Goal: Given a hypothetical community partitioning, estimate its quality.!

Idea: Communities should be more densely connected internally than random graphs
Modularity: “# edges in communities — expected # if edges were random”

Main design decision: What model to use to estimate “random” edge distribution?

"We will restrict to undirected graphs here.
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Modularity

Goal: Given a hypothetical community partitioning, estimate its quality.!

Idea: Communities should be more densely connected internally than random graphs
Modularity: “# edges in communities — expected # if edges were random”

Main design decision: What model to use to estimate “random” edge distribution?

® Easiest approach: consider a random graph with same number n of vertices and m
of edges as the original graph — expect mfi edges in a community of £ nodes

n

"We will restrict to undirected graphs here.
Markus Krétzsch, 28th Jan 2020 Knowledge Graphs slide 19 of 27



Modularity

Goal: Given a hypothetical community partitioning, estimate its quality.!

Idea: Communities should be more densely connected internally than random graphs
Modularity: “# edges in communities — expected # if edges were random”

Main design decision: What model to use to estimate “random” edge distribution?

® Easiest approach: consider a random graph with same number n of vertices and m
of edges as the original graph — expect mﬁ—z edges in a community of £ nodes

® Problem: random graphs are very homogeneous, with any node having the same
expected number of neighbours, while many real-world networks have very uneven

degree distributions
~» use a random model that preserves node degrees

"We will restrict to undirected graphs here.
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Degree-preserving random graphs

Intuitive approach: start with given network, cut each edge into two stubs, and glue the

stubs back together randomly (possibly even in self-loops)
~» degree of each node remains the same, but edges connect random nodes
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Degree-preserving random graphs

Intuitive approach: start with given network, cut each edge into two stubs, and glue the

stubs back together randomly (possibly even in self-loops)
~» degree of each node remains the same, but edges connect random nodes

Some calculations: for a graph with m edges
* Probability of two specific stubs being glued together: (22,;”)2 =5
® Possible ways of connecting two nodes i and j: degree(i) - degree(j)
~» expected edges between two nodes i and j: 229°edegree)

® Actual connections between two nodes i and j: Conn(i, j) € {0, 1}
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Degree-preserving random graphs

Intuitive approach: start with given network, cut each edge into two stubs, and glue the
stubs back together randomly (possibly even in self-loops)
~» degree of each node remains the same, but edges connect random nodes

Some calculations: for a graph with m edges

* Probability of two specific stubs being glued together: (22;1”)2 =5

* Possible ways of connecting two nodes i and j: degree(i) - degree())
~» expected edges between two nodes i and j: 229°edegree)

® Actual connections between two nodes i and j: Conn(i, j) € {0, 1}

The modularity Q is defined as follows:

1 Z (Conn(i./j) _ degree(i) degree())

:E 2m

Community C i,jeC

Note: The factor ;- ensures that -1 < Q < 1.
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Using modularity in the GN algorithm

1 . .. degree(i)degree(j
0= Z Z (Conn(z,J)— gree(i) degree())
m . £ 2m
Community C i,jeC

Values Q > 0 indicate above random edge density inside of communities, with higher
values being better

Approach:
® Compute a complete clustering using the GN algorithm
® Select the partitioning with the highest QO value
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Modularity-based community detection

The GN algorithm is not the only algorithm that can make use of modularity:

® One can also define the search for a modularity-maximising partitioning as an
optimisation problem

® This intractable problem can be heuristically solved in many ways (see, e.g., the
“Louvain method”)
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Modularity-based community detection

The GN algorithm is not the only algorithm that can make use of modularity:

® One can also define the search for a modularity-maximising partitioning as an
optimisation problem

® This intractable problem can be heuristically solved in many ways (see, e.g., the
“Louvain method”)

However, such approaches have some inherent limitations:
® Typical networks grow much faster than the maximal degree of their nodes

degree(i) degree())
2m

® At some size, the term approaches 0

~» any edge between two groups of nodes is considered a sign for community structure

Modularity-based approaches therefore cannot detect small communities in large

networks (merging them into any community they are connected with will always lead to a better values).

Moreover, fast approximate approaches can be far off the actual optimum.
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Further approaches to community detection
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Further approaches to community detection (1)

Minimum Cuts: cut graph into disconnected components by removing edges

® Prefer cuts that (1) cut only few edges and (2) lead to components of similar size
(the approach of assigning a to-be-minimised value to a cut may vary)

e Several efficient algorithms are available

® Good for partitioning network into “local” neighbourhoods by cutting communication
bottlenecks (e.g., data placement in distributed computing), less suitable for
community detection

Graph partitioning is mostly used in slightly different application areas.
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Further approaches to community detection (2)

Bi-Cliques (“Trawling”): discover communities starting from large complete bi-partite
subgraphs
® On general graphs, the approach works as follows:

(1) Split graph into two equal-sized vertex sets
(2) Look for sub-sets where all vertices on the left are connected to all vertices on
the I'Ight (mathematical background: in sufficiently dense communities, large bi-cliques must exist)

(3) Grow communities around the vertices by adding highly linked vertices

o Efficient computation uses techniques from frequent itemset mining to search such
“bi-cliques”
® Good for finding also small communities; applicable also to k-partite graphs

Very common approach in social network analysis; can be applied to rather large
networks.
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Further approaches to community detection (3)

Statistical inference: try to find a model that explains the observed data

® Consider some parametrised graph generator (“the model”), and try to find the
parameter values that are most likely to lead to the given graph

® Generally hard to solve and depending on model; many algorithms exists, e.g.,
search methods for continuous parameter fitting (e.g., gradient descent)

® Capable of finding overlapping communities; might lead to even deeper insights
into the nature of the graph than mere community detection

More complex but potentially more insightful and of greater predictive value
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Summary

Closeness and betweenness centrality evaluate the shortest paths for rather different
results

The Girvan and Newman algorithm exploits (edge) betweenness for clustering networks
into communities

Modularity is an imperfect measure for the quality of a hypothesised community structure

What’s next?
® More network analysis
® Summary

e Examinations
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