
Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH
IN ARTIFICIAL INTELLIGENCE

Lecture 6 ASP II ∗slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden

Agenda

1 Introduction
2 Uninformed Search versus Informed Search (Best First Search, A*

Search, Heuristics)
3 Local Search, Stochastic Hill Climbing, Simulated Annealing
4 Tabu Search
5 Answer-set Programming (ASP)
6 Constraint Satisfaction (CSP)
7 Structural Decomposition Techniques (Tree/Hypertree Decompositions)
8 Evolutionary Algorithms/ Genetic Algorithms

TU Dresden PSSAI slide 2 of 101

Overview ASP II

• Modeling
1 Basic Modeling
2 Methodology

• Language
3 Motivation
4 Core language

TU Dresden PSSAI slide 3 of 101

Modeling: Overview

1 Basic Modeling

2 Methodology

TU Dresden PSSAI slide 4 of 101

Outline

1 Basic Modeling

2 Methodology

TU Dresden PSSAI slide 5 of 101

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models

?
-

6

Modeling Interpreting

Solving

TU Dresden PSSAI slide 6 of 101

Modeling

• For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

• PI is (still) called problem instance
• PC is often called the problem encoding

• An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

TU Dresden PSSAI slide 7 of 101

Outline

1 Basic Modeling

2 Methodology

TU Dresden PSSAI slide 8 of 101

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

TU Dresden PSSAI slide 9 of 101

Basic methodology

Methodology
Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester (+ Optimizer)

TU Dresden PSSAI slide 10 of 101

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden PSSAI slide 11 of 101

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden PSSAI slide 12 of 101

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden PSSAI slide 13 of 101

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden PSSAI slide 14 of 101

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden PSSAI slide 15 of 101

Satisfiability testing

• Problem Instance: A propositional formula φ in CNF
• Problem Class: Is there an assignment of propositional variables to true

and false such that a given formula φ is true

• Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

• Logic Program:

Generator Tester Stable models
{ a, b } ← ← not a, b

← a, not b
X1 = {a, b}
X2 = {}

TU Dresden PSSAI slide 16 of 101

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden PSSAI slide 17 of 101

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

• Place n queens on an n× n
chess board

• Queens must not attack one
another

Q Q Q

Q Q

TU Dresden PSSAI slide 18 of 101

Defining the Field

queens.lp

row(1..n).
col(1..n).

• Create file queens.lp

• Define the field
– n rows
– n columns

TU Dresden PSSAI slide 19 of 101

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
SATISFIABLE

Models : 1
Time : 0.000
Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

TU Dresden PSSAI slide 20 of 101

Placing some Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.

• Guess a solution candidate

by placing some queens on the board

TU Dresden PSSAI slide 21 of 101

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE

Models : 3+
...

TU Dresden PSSAI slide 22 of 101

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

TU Dresden PSSAI slide 23 of 101

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden PSSAI slide 24 of 101

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

TU Dresden PSSAI slide 25 of 101

Placing n Queens

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.

• Place exactly n queens on the board

TU Dresden PSSAI slide 26 of 101

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
...

TU Dresden PSSAI slide 27 of 101

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden PSSAI slide 28 of 101

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

TU Dresden PSSAI slide 29 of 101

Horizontal and Vertical Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

• Forbid horizontal attacks

• Forbid vertical attacks

TU Dresden PSSAI slide 30 of 101

Horizontal and Vertical Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.
:- queen(I,J), queen(I’,J), I != I’.

• Forbid horizontal attacks
• Forbid vertical attacks

TU Dresden PSSAI slide 31 of 101

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)
...

TU Dresden PSSAI slide 32 of 101

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

TU Dresden PSSAI slide 33 of 101

Diagonal Attack

queens.lp

row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I,J’), J != J’.
:- queen(I,J), queen(I’,J), I != I’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J ==

I’-J’.
:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J ==

I’+J’.

• Forbid diagonal attacks

TU Dresden PSSAI slide 34 of 101

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

Models : 1+
Time : 0.000
Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

TU Dresden PSSAI slide 35 of 101

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

TU Dresden PSSAI slide 36 of 101

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
:- 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

• Encoding can be optimized
• Much faster to solve

TU Dresden PSSAI slide 37 of 101

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp -config=jumpy -q -stats=3
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

TU Dresden PSSAI slide 38 of 101

Outline

1 Basic Modeling

2 Methodology
Satisfiability
Queens
Traveling Salesperson

TU Dresden PSSAI slide 39 of 101

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden PSSAI slide 40 of 101

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden PSSAI slide 41 of 101

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

TU Dresden PSSAI slide 42 of 101

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).

TU Dresden PSSAI slide 43 of 101

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden PSSAI slide 44 of 101

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden PSSAI slide 45 of 101

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden PSSAI slide 46 of 101

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

TU Dresden PSSAI slide 47 of 101

Language: Overview

3 Motivation

4 Core language

TU Dresden PSSAI slide 48 of 101

Outline

3 Motivation

4 Core language

TU Dresden PSSAI slide 49 of 101

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden PSSAI slide 50 of 101

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden PSSAI slide 51 of 101

Basic language extensions

• The expressiveness of a language can be enhanced by introducing
new constructs

• To this end, we must address the following issues:
– What is the syntax of the new language construct?
– What is the semantics of the new language construct?
– How to implement the new language construct?

• A way of providing semantics is to furnish a translation removing the new
constructs, eg. classical negation

• This translation might also be used for implementing the language
extension

TU Dresden PSSAI slide 52 of 101

Outline

3 Motivation

4 Core language

TU Dresden PSSAI slide 53 of 101

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

TU Dresden PSSAI slide 54 of 101

Integrity constraint

• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.

TU Dresden PSSAI slide 55 of 101

Integrity constraint

• Idea Eliminate unwanted solution candidates
• Syntax An integrity constraint is of the form

← a1, . . . , am, not am+1, . . . , not an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

• Example :- edge(3,7), color(3,red), color(7,red).

• Embedding The above integrity constraint can be turned into the normal
rule

x← a1, . . . , am, not am+1, . . . , not an, not x

where x is a new symbol, that is, x 6∈ A.

TU Dresden PSSAI slide 56 of 101

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

TU Dresden PSSAI slide 57 of 101

Choice rule

• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden PSSAI slide 58 of 101

Choice rule

• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden PSSAI slide 59 of 101

Choice rule

• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden PSSAI slide 60 of 101

Choice rule

• Idea Choices over subsets
• Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

• Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

• Example
{ buy(pizza); buy(wine); buy(corn) } :- at(grocery).

• Another Example P = {{a} ← b, b←} has two stable models: {b}
and {a, b}

TU Dresden PSSAI slide 61 of 101

Embedding in normal rules

• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden PSSAI slide 62 of 101

Embedding in normal rules

• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden PSSAI slide 63 of 101

Embedding in normal rules

• A choice rule of form

{a1, . . . , am} ← am+1, . . . , an, not an+1, . . . , not ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an, not an+1, . . . , not ao

a1 ← b, not a′1 . . . am ← b, not a′m
a′1 ← not a1 . . . a′m ← not am

by introducing new atoms b, a′1, . . . , a′m.

TU Dresden PSSAI slide 64 of 101

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

TU Dresden PSSAI slide 65 of 101

Cardinality rule

• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden PSSAI slide 66 of 101

Cardinality rule

• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden PSSAI slide 67 of 101

Cardinality rule

• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden PSSAI slide 68 of 101

Cardinality rule

• Idea Control (lower) cardinality of subsets
• Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

• Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

• Note l acts as a lower bound on the body

• Example
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

• Another Example P = {a← 1{b, c}, b←} has stable model {a, b}

TU Dresden PSSAI slide 69 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 70 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 71 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 72 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 73 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 74 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 75 of 101

Embedding in normal rules

• Replace each cardinality rule

a0 ← l { a1, . . . , am, not am+1, . . . , not an }

by a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having
an equal or greater index than i, are in a stable model

• The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai
ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), not aj
ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

TU Dresden PSSAI slide 76 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}

• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 77 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 78 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 79 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 80 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 81 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 82 of 101

An example

• Program {a←, c← 1 {a, b}} has the stable model {a, c}
• Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

TU Dresden PSSAI slide 83 of 101

. . . and vice versa

• A normal rule
a0 ← a1, . . . , am, not am+1, . . . , not an

can be represented by the cardinality rule

a0 ← n {a1, . . . , am, not am+1, . . . , not an}

TU Dresden PSSAI slide 84 of 101

Cardinality rules with upper bounds

• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden PSSAI slide 85 of 101

Cardinality rules with upper bounds

• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden PSSAI slide 86 of 101

Cardinality rules with upper bounds

• A rule of the form

a0 ← l { a1, . . . , am, not am+1, . . . , not an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b, not c
b ← l { a1, . . . , am, not am+1, . . . , not an }
c ← u+1 { a1, . . . , am, not am+1, . . . , not an }

where b and c are new symbols

• Note The single constraint in the body of the cardinality rule (1) is referred
to as a cardinality constraint

TU Dresden PSSAI slide 87 of 101

Cardinality constraints

• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden PSSAI slide 88 of 101

Cardinality constraints

• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden PSSAI slide 89 of 101

Cardinality constraints

• Syntax A cardinality constraint is of the form

l { a1, . . . , am, not am+1, . . . , not an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

• Informal meaning A cardinality constraint is satisfied by a stable model X,
if the number of its contained literals satisfied by X is between l and u
(inclusive)

• In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

TU Dresden PSSAI slide 90 of 101

Cardinality constraints as heads

• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden PSSAI slide 91 of 101

Cardinality constraints as heads

• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden PSSAI slide 92 of 101

Cardinality constraints as heads

• A rule of the form

l {a1, . . . , am, not am+1, . . . , not an} u← an+1, . . . , ao, not ao+1, . . . , not ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao, not ao+1, . . . , not ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, not am+1, . . . , not an} u
← b, not c

where b and c are new symbols

• Example 1{ color(v42,red); color(v42,green); color(v42,blue) }1.

TU Dresden PSSAI slide 93 of 101

Outline

3 Motivation

4 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

TU Dresden PSSAI slide 94 of 101

Weight rule

• Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

• A weighted literal wi : `i associates each literal `i with a weight wi

• Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

TU Dresden PSSAI slide 95 of 101

Weight rule

• Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

• A weighted literal wi : `i associates each literal `i with a weight wi

• Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

TU Dresden PSSAI slide 96 of 101

Weight constraints

• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden PSSAI slide 97 of 101

Weight constraints

• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden PSSAI slide 98 of 101

Weight constraints

• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden PSSAI slide 99 of 101

Weight constraints

• Syntax A weight constraint is of the form

l { w1 : a1, . . . , wm : am, wm+1 : not am+1, . . . , wn : not an } u

where 0 ≤ m ≤ n and each ai is an atom;
l, u and wi are integers for 1 ≤ i ≤ n

• Meaning A weight constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

• Note (Cardinality and) weight constraints amount to constraints on (count
and) sum aggregate functions

• Example
10 { 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) } 20

TU Dresden PSSAI slide 100 of 101

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net

TU Dresden PSSAI slide 101 of 101

http://potassco.sourceforge.net

	Modeling
	Basic Modeling
	Methodology
	Satisfiability
	Queens
	Traveling Salesperson

	Language
	Motivation
	Core language
	Integrity constraint
	Choice rule
	Cardinality rule
	Weight rule

