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Abstract
Many formalisms combining ontology languages with uncer-
tainty, usually in the form of probabilities, have been stud-
ied over the years. Most of these formalisms, however, as-
sume that the probabilistic structure of the knowledge re-
mains static over time. We present a general approach for
extending ontology languages to handle time-evolving un-
certainty represented by a dynamic Bayesian network. We
show how reasoning in the original language and dynamic
Bayesian inferences can be exploited for effective reasoning
in our framework.

Introduction
Description Logics (DLs) (Baader et al. 2007) are a well-
known family of knowledge representation formalisms that
have been successfully employed for encoding the knowl-
edge of many application domains. In DLs, knowledge is
represented through a finite set of axioms, usually called an
ontology or knowledge base. In essence, these axioms are
atomic pieces of knowledge that provide explicit informa-
tion of the domain. When mixed together in an ontology,
these axioms may imply some additional knowledge that is
not explicitly encoded. Reasoning is the act of making this
implicit knowledge explicit through an entailment relation.

Some of the largest and best-maintained DL ontologies
represent knowledge from the bio-medical domains. For
instance, the NCBO Bioportal1 contains 420 ontologies of
various sizes. In the bio-medical fields it is very common
to have only uncertain knowledge. The certainty that an ex-
pert has on an atomic piece of knowledge may have arisen
from a statistical test, or from possibly imprecise measure-
ments, for example. It thus becomes relevant to extend DLs
to represent and reason with uncertainty.

The need for probabilistic extensions of DLs has been
observed for over two decades already. To cover it, many
different formalisms have been introduced (Jaeger 1994;
Lukasiewicz and Straccia 2008; Lutz and Schröder 2010;
Klinov and Parsia 2011). The differences in these logics
range from the underlying classical DL used, to the seman-
tics, to the assumptions made on the probabilistic compo-
nent. One of the main issues that these logics need to handle
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is the representation of joint probabilities, in particular when
the different axioms are not required to be probabilistically
independent. A recent approach solves this issue by divid-
ing the ontology into contexts, which intuitively represent
axioms that must appear together. The probabilistic knowl-
edge is expressed through a Bayesian network that encodes
the joint probability distribution of these contexts. Although
originally developed as an extension of the DL EL (Cey-
lan and Peñaloza 2014b), the framework has been extended
to arbitrary ontology languages with a monotone entailment
relation (Ceylan and Peñaloza 2014a).

One common feature of the probabilistic extensions of
DLs existing in the literature is that they consider the prob-
ability distribution to be static. For many applications, this
assumption does not hold: the probability of a person to have
gray hair increases as time passes, as does the probability of
a computer component to fail. To the best of our knowledge,
there is so far no extension of DLs that can handle evolving
probabilities effectively.

In this paper, we describe a general approach for extend-
ing ontology languages to handle evolving probabilities. By
extension, our method covers all DLs, but is not limited to
them. The main idea is to adapt the formalism from (Cey-
lan and Peñaloza 2014a) to use dynamic Bayesian networks
(DBNs) (Murphy 2002) as the underlying uncertainty struc-
ture to compactly encode evolving probability distributions.

Given an arbitrary ontology language L, we define its dy-
namic Bayesian extension DBL. We show that reasoning in
DBL can be seamlessly divided into the probabilistic com-
putation over the DBN, and the logical component with its
underlying entailment relation. In order to reduce the num-
ber of entailment checks, we compile a so-called context
formula, which encodes all contexts in which a given conse-
quence holds.

Related to our work are relational BNs (Jaeger 1997) and
their extensions. In contrast to relational BNs, we pro-
vide a tight coupling between the logical formalism and
the DBN, which allows us to describe evolving probabilities
while keeping the intuitive representations of each individ-
ual component. Additionally, restricting the logical formal-
ism to specific ontology languages provides an opportunity
for finding effective reasoning algorithms.



Bayesian Ontology Languages
To remain as general as possible, we do not fix a specific
logic, but consider an arbitrary ontology language L consist-
ing of two infinite sets A and C of axioms and consequences,
respectively, and a class O ⊆ ℘fin(A) of finite sets of ax-
ioms, called ontologies, such that if O ∈ O, then O′ ∈ O for
all O′ ⊆ O. The language L is associated to a class I of in-
terpretations and an entailment relation |= ⊆ I×(A∪C). An
interpretation I ∈ I is a model of the ontology O (I |= O)
if I |= α for all α ∈ O. O entails c ∈ C (O |= c) if
every model of O entails c. Notice that the entailment rela-
tion is monotonic; i.e., if O |= c and O ⊆ O′ ∈ O, then
O′ |= c. Any standard description logic (DL) (Baader et al.
2007) is an ontology language of this kind; consequences
in these languages are e.g. concept unsatisfiability, concept
subsumption, or query entailment. However, many other
ontology languages of varying expressivity and complexity
properties exist. For the rest of this paper, L is an arbitrary
but fixed ontology language, with axioms A, ontologies O,
consequences C, and interpretations I.

As an example language we use the DL EL (Baader et
al. 2005), which we briefly introduce here. Given two dis-
joint sets NC and NR, EL concepts are built by the gram-
mar rule C ::= A | > | C u C | ∃r.C where A ∈ NC

and r ∈ NR. EL axioms and consequences are expressions
of the form C v D, where C and D are concepts. An
interpretation is a pair (∆I , ·I) where ∆I is a non-empty
set and ·I maps every A ∈ NC to AI ⊆ ∆I and every
r ∈ NR to rI ⊆ ∆I × ∆I . This function is extended
to concepts by >I := ∆I , (C uD)I := CI ∩DI , and
(∃r.C)I := {d | ∃e ∈ CI .(d, e) ∈ rI}. This interpretation
entails the axiom (or consequence) C v D iff CI ⊆ DI .

The Bayesian ontology language BL extends L by associ-
ating each axiom in an ontology with a context, which intu-
itively describes the situation in which the axiom is required
to hold. The knowledge of which context applies is uncer-
tain, and expressed through a Bayesian network (Ceylan and
Peñaloza 2014a).

Briefly, a Bayesian network (Darwiche 2009) is a pair
B = (G,Φ), where G = (V,E) is a finite directed acyclic
graph (DAG) whose nodes represent Boolean random vari-
ables, and Φ contains, for every x ∈ V , a conditional proba-
bility distribution PB(x | π(x)) of x given its parents π(x).
Every variable x ∈ V is conditionally independent of its
non-descendants given its parents. Thus, the BN B defines a
unique joint probability distribution (JPD) over V :

PB(V ) =
∏
x∈V

PB(x | π(x)).

Let V be a finite set of variables. A V -context is a con-
sistent set of literals over V . A V -axiom is an expression
of the form 〈α : κ〉 where α ∈ A is an axiom and κ is a
V -context. A V -ontology is a finite set O of V -axioms, such
that {α | 〈α : κ〉 ∈ O} ∈ O. A BL knowledge base (KB)
over V is a pair K = (O,B) where B is a BN over V and O
is a V -ontology.

We briefly illustrate these notions over the language BEL,
an extension of the DL EL, in the following Example.
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Figure 1: The BN B1 over the variables V = {x, y, z}

Example 1. Consider the BEL KB K1 = (B1,O1) where
O1={ 〈Comp v ∃use.Mem u ∃use.CPU : ∅〉 ,

〈∃use.FailMem v FailComp : {x}〉 ,
〈∃use.FailCPU v FailComp : {x}〉 ,
〈∃use.FailMem u ∃use.FailCPU v FailComp:{¬x}〉 ,
〈Mem v FailMem : {y}〉 , 〈CPU v FailCPU : {z}〉},

and B1 is the BN shown in Figure 1.
This KB represents a computer failure scenario, where x

stands for a critical situation, y represents the memory fail-
ing, and z the CPU failing.

The contextual semantics is defined by extending in-
terpretations to evaluate also the variables from V . A
V -interpretation is a pair I = (I,V I) where I ∈ I and
V I is a propositional interpretation over the variables V .
The V -interpretation I = (I,V I) is a model of 〈α : κ〉
(I |= 〈α : κ〉), where α ∈ A, iff (V I 6|=p κ) 2 or (I |= α).

It is a model of the V -ontology O iff it is a model of all
the V -axioms in O. It entails c ∈ C if I |= c. The intuition
behind this semantics is that an axiom is evaluated to true by
all models provided it is in the right context.

Given a V -ontology O, every propositional inter-
pretation, or world, W on V defines an ontology
OW := {α | 〈α : κ〉 ∈ O,W |=p κ}. Consider the KB K1

provided in Example 1: The world W = {x,¬y, z} defines
the ontology

OW={Comp v ∃use.Mem u ∃use.CPU,
∃use.FailMem v FailComp,

∃use.FailCPU v FailComp, CPU v FailCPU}.
Intuitively, a contextual ontology is a compact representa-

tion of exponentially many ontologies from L; one for each
world W . The uncertainty in BL is expressed by the BN B,
which is interpreted using multiple world semantics.
Definition 2 (probabilistic interpretation). A probabilistic
interpretation is a pair P = (I, PI), where I is a set of
V -interpretations and PI is a probability distribution over
I such that PI(I) > 0 only for finitely many interpretations
I ∈ I. It is a model of the V -ontology O if every I ∈ I is
a model of O. P is consistent with the BN B if for every
valuation W of the variables in V it holds that∑

I∈I, V I=W

PI(I) = PB(W).

2We use |=p to distinguish propositional entailment from |=.



The probabilistic interpretation P is a model of the KB
(B,O) iff it is a model of O and consistent with B.

The fundamental reasoning task in BL, probabilistic en-
tailment, consists in finding the probability of observing a
consequence c; that is, the probability of being at a context
where c holds.

Definition 3 (probabilistic entailment). Let c ∈ C, and K
a BL KB. The probability of c w.r.t. the probabilistic inter-
pretation P = (I, PI) is PP(c) :=

∑
(I,W)∈I,I|=c PI(I,W).

The probability of c w.r.t. K is PK(c) := infP|=K PP(c).

It has been shown that to compute the conditional proba-
bility of a consequence c, it suffices to test, for each world
W , whether OW entails c (Ceylan and Peñaloza 2014b).

Proposition 4. Let K = (B,O) be a BL KB and c ∈ C.
Then PK(c) =

∑
OW |=c PB(W).

This means that reasoning in BL can be reduced to expo-
nentially many entailment tests in the classical language L.
For some logics, this exponential enumeration of worlds can
be avoided (Ceylan and Peñaloza 2014c). However, this de-
pends on the properties of the ontological language and its
entailment relation, and cannot be guaranteed for arbitrary
languages.

Another relevant problem is to compute the prob-
ability of a consequence given some partial informa-
tion about the context. Given a context κ, the con-
ditional probability PK(c | κ) is defined via the rule
PK(c, κ) = PK(c | κ)PB(κ), where

PK(c, κ) =
∑

OW |=c,W|=pκ

PB(W).

For simplicity, in the rest of this paper we consider only un-
conditional consequences. However, it should be noted that
all results can be transferred to the conditional case.

Example 5. Consider again the KB K1 = (B1,O1) from
Example 1 and the consequence Comp v FailComp. We are
interested in finding the probability of the computer to fail,
i.e. PK1

(Comp v FailComp). This can be computed by enu-
merating all worlds W for which OW |= Comp v FailComp,
which yields the probability 0.238.

As seen, it is possible to extend any ontological language
to allow for probabilistic reasoning based on a Bayesian net-
work. We now further extend this formalism to be able to
cope with controlled updates of the probabilities over time.

Dynamic Bayesian Ontology Languages
With BL, one is able to represent and reason about the uncer-
tainty of the current context, and the consequences that fol-
low from it. In that setting, the joint probability distribution
of the contexts, expressed by the BN, is known and fixed. In
some applications, see especially (Sadilek and Kautz 2010)
this probability distribution may change over time. For ex-
ample, as the components of a computer age, their probabil-
ity of failing increases. The new probability depends on how
likely it was for the component to fail previously, and the
ageing factors to which it is exposed. We now extend BL to
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Figure 2: The TBN B→ over the variables V = {x, y, z}

handle these cases, by considering dynamic BNs as the un-
derlying formalism for managing uncertainty over contexts.

Dynamic BNs (DBNs) (Dean and Kanazawa 1989; Mur-
phy 2002) extend BNs to provide a compact representa-
tion of evolving joint probability distributions for a fixed set
of random variables. The update of the JPD is expressed
through a two-slice BN, which expresses the probabilities at
the next point in time, given the current context.
Definition 6 (DBN). Let V be a finite set of Boolean ran-
dom variables. A two-slice BN (TBN) over V is a pair
(G,Φ), where G = (V ∪ V ′, E) is a DAG containing
no edges between elements of V , V ′ = {x′ | x ∈ V },
and Φ contains, for every x′ ∈ V ′ a conditional prob-
ability distribution P (x′ | π(x′)) of x′ given its parents
π(x′). A dynamic Bayesian network (DBN) over V is a pair
D = (B1,B→) where B1 is a BN over V , and B→ is a TBN
over V .

A TBN over V = {x, y, z} is depicted in Figure 2. The
set of nodes of the graph can be thought of as containing two
disjoint copies of the random variables in V . Then, the prob-
ability distribution at time t+ 1 depends on the distribution
at time t. In the following we will use Vt and xt for x ∈ V ,
to denote the variables in V at time t.

As standard in BNs, the graph structure of a TBN encodes
the conditional dependencies among the nodes: every node
is independent of all its non-descendants given its parents.
Thus, for a TBN B, the conditional probability distribution
at time t+ 1 given time t is

PB(Vt+1 | Vt) =
∏

x′∈V ′

PB(x
′ | π(x′)).

We further assume the Markov property: the probability
of the future state is independent from the past, given the
present state.

In addition to the TBN, a DBN contains a BN B1 that en-
codes the JPD of V at the beginning of the evolution. Thus,
the DBN D = (B1,B→) defines, for every t ≥ 1, the unique
probability distribution

PB(Vt) = PB1
(V1)

t∏
i=2

∏
x∈V

PB→(xi | π(xi)).

Intuitively, the distribution at time t is defined by unraveling
the DBN starting from B1, using the two-slice structure of
B→ until t copies of V have been created. This produces a
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Figure 3: Three step unraveling B1:3 of (B1,B→)

new BN B1:t encoding the distribution over time of the dif-
ferent variables. Figure 3 depicts the unraveling to t = 3
of the DBN (B1,B→) where B1 and B→ are the networks
depicted in Figures 1 and 2, respectively. The conditional
probability tables of each node given its parents (not de-
picted) are those of B1 for the nodes in V1, and of B→ for
nodes in V2 ∪ V3. Notice that B1:t has t copies of each ran-
dom variable in V . For a given t ≥ 1, we call Bt the BN
obtained from the unraveling B1:t of the DBN to time t, and
eliminating all variables not in Vt. In particular, we have that
PBt

(V ) = PB1:t
(Vt).

The dynamic Bayesian ontology language DBL is very
similar to BL, except that the probability distribution of the
contexts evolves accordingly to a DBN.

Definition 7 (DBL KB). A DBL knowledge base (KB) is a
pair K = (D,O) where D = (B1,B→) is a DBN over V and
O is a V -ontology. Let K = (D,O) be a DBL KB over V .
A timed probabilistic interpretation is an infinite sequence
P = (Pt)t≥1 of probabilistic interpretations. P is a model
of K if for every t, Pt is a model of the BL KB (Bt,O).

In a nutshell, a DBN can be thought of as a compact rep-
resentation of an infinite sequence of BNs B1,B2, . . . over
V . Following this idea, a DBL KB expresses an infinite
sequence of BL KBs, where the ontological component re-
mains unchanged, and only the probability distribution of
the contexts evolves over time. A timed probabilistic inter-
pretation P simply interprets each of these BL KBs, at the
corresponding point in time. To be a model of a DBL KB,
P must then be a model of all the associated BL KBs.

Before describing the reasoning tasks for DBL and meth-
ods for solving them, we show how the computation of all
the contexts that entail a consequence can be reduced to
the enumeration of the worlds satisfying a propositional for-
mula.

Compiling Contextual Knowledge
From Proposition 4, we see that reasoning in BL can be re-
duced to checking, for every world W , whether OW |= c.
This reduces probabilistic reasoning to a sequence of stan-
dard entailment tests over the original language L. However,
each of these entailments might be very expensive. For ex-
ample, in the very expressive DL SHOIQ, deciding an en-
tailment is already NEXPTIME-hard (Tobies 2000). Rather
than repeating this reasoning step for every world, it makes
sense to try to identify the relevant worlds a priori. We do
this through the computation of a context formula.

Definition 8 (context formula). Let O be a V -ontology, and
c ∈ C. A context formula for c w.r.t. O is a propositional for-
mula φ such that for every interpretation W of the variables
in V , it holds that OW |= c iff W |=p φ.

The idea behind this formula is that, for finding whether
OW |= c, it suffices to check whether the valuation W satis-
fies φ. This test requires only linear time on the length of the
context formula. The context formula can be seen as a gen-
eralization of the pinpointing formula (Baader and Peñaloza
2010b) and the boundary (Baader et al. 2012), defined orig-
inally for classical ontology languages.

Example 9. Consider again the V -ontology O1 from Exam-
ple 1. The formula φ1 := (x ∧ (y ∨ z)) ∨ (¬x ∧ y ∧ z) is a
context formula for Comp v FailComp w.r.t. O1. In fact, the
valuation {x,¬y, z} satisfies this formula.

Clearly, computing the context formula must be at least
as hard as deciding an entailment in L: if we label every
axiom in a classical L-ontology O with the same proposi-
tional variable x, then the boundary formula of c w.r.t. this
{x}-ontology is x iff O |= c. On the other hand, the al-
gorithm used for deciding the entailment relation can usu-
ally be modified to compute the context formula. Using
arguments similar to those developed for axiom pinpoint-
ing (Baader and Peñaloza 2010a; Kalyanpur et al. 2007),
it can be shown that for most description logics, comput-
ing the context formula is not harder, in terms of computa-
tional complexity, than standard reasoning. In particular this
holds for any arbitrary ontology language whose entailment
relation is EXPTIME-hard. This formula can also be com-
piled into a more efficient data structure like binary decision
diagrams (Lee 1959). Intuitively, this means that we can
compute this formula using the same amount of resources
needed for only one entailment test, and then use it for ver-
ifying whether the sub-ontology defined by a world entails
the consequence in an efficient way.

Reasoning in DBL
Rather than merely computing the probability of currently
observing a consequence, we are interested in computing
the probability of a consequence to follow after some fixed
number of time steps t.

Definition 10 (probabilistic entailment with time). Let
K = (D,O) be a DBL KB and c ∈ C. Given a timed in-
terpretation P and t ≥ 1, the probability of c at time t w.r.t.
P is PP(c[t]) := PPt(c). The probability of c at time t w.r.t.
K is PK(c[t]) := infP|=K PP(c[t]).

We show that probabilistic entailment over a fixed time
bound can be reduced to probabilistic entailment defined for
BOLs by unravelling the DBN.

Lemma 11. Let K = (D,O) be a DBL KB, c ∈ C, and
t ≥ 1. Then the probability of c at time t w.r.t. K is given by

PK(c[t]) =
∑

OW |=c

PBt
(W)

Proof. (Sketch) A timed model P of K is a sequence of
probabilistic interpretations P1,P2, . . ., where each Pi is a



model of the BL KB Ki := (Bi,O). We use this fact to
show that

PK(c[t]) = inf
P|=K

PP(c[t]) = inf
P|=K

PPt(c) (1)

= inf
Pt|=Kt

PPt(c) = PKt(c) (2)

=
∑

OW |=c

PBt
(W), (3)

where (1) follows from Definition 10, (2) holds by defini-
tion, and (3) follows from Proposition 4.

Lemma 11 provides a method for computing the probabil-
ity of an entailment at a fixed time t. One can first generate
the BN Bt, and then compute the probability w.r.t. Bt of all
the worlds that entail c. Moreover, using a context formula
we can compile away the ontology and reduce reasoning to
standard inferences in BNs, only.

Theorem 12. Let K = (D,O) be a DBL KB, c ∈ C, φ a
context formula for c w.r.t. O, and t ≥ 1. Then the probabil-
ity of c at time t w.r.t. K is given by PK(c[t]) = PBt

(φ).

Proof. By Lemma 11 and the definition of a context for-
mula, we have

PK(c[t]) =
∑

OW |=c

PBt(W) =
∑

W|=pφ

PBt(W) = PBt(φ),

which proves the result.

This means that one can first compute a context formula
for c and then do probabilistic inferences over the DBN to
detect the probability of satisfying φ at time t. For this, we
can exploit any existing DBN inference method. One option
is to do variable elimination over the t-step unraveled DBN
B1:t, to compute Bt. Assuming that t is fixed, it suffices
to make 2|V | inferences (one for each world) over Bt and
the same number of propositional entailment tests over the
context formula. If entailment in L is already exponential,
then computing the probability of c at time t is as hard as
deciding entailments.

The previous argument only works assuming a fixed time
point t. Since it depends heavily on computing Bt (e.g., via
variable elimination), it does not scale well as t increases.
Other methods have been proposed for exploiting the recur-
sive structure of the DBN. For instance, one can use the al-
gorithm described in (Vlasselaer et al. 2014) that provides
linear scalability over time. The main idea is to compile the
structure into an arithmetic circuit (Darwiche 2009) and use
forward and backward message passing (Murphy 2002).

While computing the probability of a consequence at a
fixed point in time t is a relevant task, it is usually more im-
portant to know whether the consequence can be observed
within a given time limit. In our computer example, we
would be interested in finding the probability of the system
failing within, say, the following twenty steps.

Abusing of the notation, we use the expression ∼ c, c ∈ C,
to denote that the consequence c does not hold; i.e., I |= ∼ c
iff I 6|= c. Thus, for example, PK(∼ c[t]) is the probability

of c not holding at time t. To find the probability of observ-
ing c in the first t time steps, one can alternatively compute
the probability of not observing c in any of those steps. For-
mally, for a timed interpretation P and t ∈ N, we define

PP(c[1 : t]) := 1− PP(∼ c[1], . . . ,∼ c[t]).

Definition 13 (time bounded probabilistic entailment). The
probability of observing c in at most t steps w.r.t. the DBL
KB K is PK(c[1 : t]) := infP|=K PP(c[1 : t]).

Just as before, given a constant t ≥ 1, it is possible to
compute PK(c[1 : t]) by looking at the t-step unraveling
of D. More precisely, to compute PP(∼ c[1], . . . ,∼ c[t]), it
suffices to look at all the valuations W of

⋃t
i=1 Vi such that

for all i, 1 ≤ i ≤ t, it holds that OW(i) |= ∼ c. These val-
uations correspond to an evolution of the system where the
consequence c is not observed in the first t steps. The prob-
ability of these valuations w.r.t. B1:t then yields the proba-
bility of not observing this consequence. We thus get the
following result.
Theorem 14. Let K = (D,O) be a DBL KB, c ∈ C,
φ a context formula for c w.r.t. O, and t ≥ 1. Then
PK(c[1 : t]) =

∑
W|∃i.W(i)|=pφ

PB1:t
(W).

Proof (Sketch). Using the pithy interpretations of the crisp
ontologies OW(i), we can build a timed interpretation P0

such that PP0
(c[1 : t]) =

∑
W|∃i.W(i)|=pφ

PB1:t
(W), in

a way similar to Theorem 12 of (Ceylan and Peñaloza
2014b). The existence of another timed interpretation P
such that PP(c[1 : t]) < PP0(c[1 : t]) contradicts the
properties of the pithy interpretations. Thus, we obtain that
PP0

(c[1 : t]) = infP|=K PP(c[1 : t]) = PK(c[1 : t]).

This means that the probability of observing a conse-
quence within a fixed time-bound t can be computed by
simply computing the context formula and then performing
probabilistic a posteriori computations over the unraveled
BN. In our running example, the probability of observing a
computer failure in the next 20 steps is simply

PK(Comp v FailComp[1 : 20]) =
∑

W|∃i.W(i)|=pφ

PBi
(φ).

Thus, the computational complexity of reasoning is not af-
fected by introducing the dynamic evolution of the BN, as
long as the time bound is constant. Notice, however, that
the number of possible valuations grows exponentially on
the time bound t. Thus, for large intervals, this approach
becomes unfeasible.

By extending the time limit indefinitely, we can also
find the probability of eventually observing the consequence
c (e.g., the probability of the system ever failing). The
probability of eventually observing c w.r.t. K is given by
PK(c[∞]) := limt→∞ PK(c[1 : t]). Notice that PK(c[1 : t])
is monotonic on t and bounded by 1; hence PK(c[∞]) is
well defined.

Observe that Theorem 14 cannot be used to compute the
probability of eventually observing c since one cannot neces-
sarily predict the changes in probabilities of finding worlds
that entail the consequence c. Rather than considering these
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Figure 4: P (V | {x, y, z}t)

increasingly large BNs separately, we can exploit methods
developed for probability distributions that evolve over time.
This will also allow us to extract more information from
DBL KBs.

It is easy to see that every TBN defines a time-
homogeneous Markov chain over a finite state space. More
precisely, if B is a TBN over V , then MB is the Markov
chain, where every valuation W of the variables in V is a
state and the transition probability distribution given the cur-
rent state W is described by the BN obtained from adding W
as evidence to the first slice of B. For example, the TBN B→
from Figure 2 yields the conditional probability distribution
given that {x, y, z} was observed at time t depicted in Fig-
ure 4. From this, we can derive the probability of observing
{x, y, z} at time t + 1 given that it was observed at time t,
which is P ({x, y, z}t+1 | {x, y, z}t) = 0.252.

We extend the notions from Markov chains to TBNs in
the obvious way. In particular, the TBN B is irreducible
if for every two worlds V,W , the probability of eventually
reaching W given V is greater than 0. It is aperiodic if for
every world W there is an nW such that for all n ≥ nW ,
it holds that P (Wn | W) > 0. A distribution PW over the
worlds is stationary if

∑
W P (V | W)PW (W) = PW (V)

holds for every world V . It follows immediately that if B
is irreducible and aperiodic, then it has a unique stationary
distribution (Harris 1956).

Given a TBN B over V , let now ∆B be the set of all sta-
tionary distributions over the worlds of V . For a world W ,
define δB(W) := minP∈∆B P (W) to be the smallest prob-
ability assigned by any stationary distribution of B to W . If
δB(W) > 0, then we know that, regardless of the initial dis-
tribution, in the limit we will always be able to observe the
world W with a constant positive probability. In particular,
this means that the probability of eventually observing W
equals 1. Notice moreover that this results is independent of
the initial distribution used.

We can take this idea one step forward, and consider sets
of worlds. For a propositional formula φ, let

δB(φ) := min
P∈∆B

∑
W|=pφ

P (W).

In other words, δB(φ) expresses the minimum probability of
satisfying φ in any stationary distribution of B. From the
arguments above, we obtain the following theorem.

Theorem 15. Let K = (D,O) be a DBL KB over V with

D = (B1,B→), c ∈ C, and φ a context formula for c w.r.t.
O. If δB→(φ) > 0, then PK(c[∞]) = 1.

In particular, if B→ is irreducible and aperiodic, ∆B con-
tains only one stationary distribution, which simplifies the
computation of the function δ. Unfortunately, such a sim-
ple characterization of PK(c[∞]) cannot be given when
δB→(φ) = 0. In fact, in this case the result may depend
strongly on the initial distribution.
Example 16. Let V = {x}, O2 = {〈A v B : {x}〉}, and
consider the TBN B′

→ over V defined by P (x′ | x) = 1
and P (x′ | ¬x) = 0. It is easy to see that any distribu-
tion over the valuations of V is stationary. For every initial
distribution B, if K = (D,O2) where D = (B,B′

→), then
PK(A v B[∞]) = PB(x).

So far, our reasoning services have focused on predicting
the outcome at future time steps, given the current knowl-
edge of the system. Based on our model of evolving prob-
abilities, the distribution at any time t + 1 depends only on
time t, if it is known. However, for many applications it
makes sense to consider evidence that is observed through-
out several time steps. For instance, in our computer fail-
ure scenario, the DBN B→ ensures that, if at some point a
critical situation is observed (x is true), then the probability
of observing a memory or CPU failure in the next step is
higher. That is, the evolution of the probability distribution
is affected by the observed value of the variable x.

Suppose that we have observed over the first t time steps
that no critical situation has occurred, and we want to know
the probability of a computer failure. Formally, let E be a
consistent set of literals over

⋃t
i=1 Vi. We want to compute

the probability PK(c[t] | E) of observing c at time t given
the evidence E. This is just a special case of bounded prob-
abilistic entailment, where the worlds are not only restricted
w.r.t. the context formula but also w.r.t. the evidence E.

The efficiency of this approach depends strongly on the
time bound t, but also on the structure of the TBN B→. Re-
call that the complexity of reasoning in a BN depends on
the tree-width of its underlying DAG (Pan et al. 1998). The
unraveling of B→ produces a new DAG whose tree-width
might increase with each unraveling step, thus impacting the
reasoning methods negatively.

Conclusions
We have introduced a general approach for extending on-
tology languages to handle time-evolving probabilities with
the help of a DBN. Our framework can be instantiated to
any language with a monotonic entailment relation includ-
ing, but not limited to, all the members of the description
logic family of knowledge representation formalisms.

Our approach extends on ideas originally introduced for
static probabilistic reasoning. The essence of the method
is to divide an ontology into different contexts, which are
identified by a consistent set of propositional variables from
a previously chosen finite set of variables V . The probabilis-
tic knowledge is expressed through a probability distribution
over the valuations of V which is encoded by a DBN.

Interestingly, our formalism allows for reasoning meth-
ods that exploit the properties of both, the ontological, and



the probabilistic components. From the ontological point of
view, we can use suplemental reasoning to produce a context
formula that encodes all the possible worlds from which a
wanted consequence can be derived. We can then use stan-
dard DBN methods to compute the probability of satisfying
this formula.

This work represents first steps towards the development
of a formalism combining well-known ontology languages
with time-evolving probabilities. First of all, we have intro-
duced only the most fundamental reasoning tasks. It is pos-
sible to think of many other problems like finding the most
plausible explanation for an observed event, or computing
the expected time until a consequence is derived, among
many others.

Finally, the current methods developed for handling
DBNs, although effective, are not adequate for our prob-
lems. To find out the probability of satisfying the context
formula φ, we need compute the probability of each of the
valuations that satisfy φ at different points in time. Even us-
ing methods that exploit the structure of the DBN directly,
the information of the context formula is not considered.
Additionally, with the most efficient methods to-date, it is
unclear how to handle the evidence over time effectively.
Dealing with these, and other related problems, will be the
main focus of our future work.

Acknowledgments
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