
Concurrency Theory

Lecture 10: The π-Calculus

Stephan Mennicke
Knowledge-Based Systems Group

July 4-11, 2023

The π-Calculus – Syntax

Let N be a set of names.

For names x, y, z ∈ N , a prefix is an expression π of the form

π ::= x⟨y⟩ x(z) [x = y]π τ .

The set of all process expressions of Pπ (the π-calculus) is defined by the following
grammar:

P ::=
∑

i∈I πi.Pi P1 | P2 (νa)P !P

Concurrency Theory – The π-Calculus 2

The π-Calculus – Structural Congruence

Structural congruence ≡ is the smallest process congruence on Pπ, such that

1. [x = x]π.P ≡ π.P ;
2. P ≡α Q (α-conversion) implies P ≡ Q;
3. P + 0 ≡ P , P +Q ≡ Q+ P , P + (Q+R) ≡ (P +Q) +R;
4. P | 0 ≡ P , P |Q ≡ Q | P , P | (Q |R) ≡ (P |Q) |R;
5. (νx)(P |Q) ≡ P | (νx)Q if x /∈ fn(P), (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P ;
6. !P ≡ P |!P .

Note: Case 2, α-conversion, is often assumed as the default case, meaning that
processes P and Q are not distinguished if P ≡α Q holds. We refrain from doing so for
the procedure of this class and keep α-conversion inside structural congruence.

Concurrency Theory – The π-Calculus 3

The π-Calculus – Reduction Semantics

The reduction relation for Pπ is the smallest relation −→⊆ Pπ × Pπ, satisfying the
following rules:

(tau)
τ.P −→ P

(struct)
P ′ ≡ P P −→ Q Q ≡ Q′

P ′ −→ Q′

(react)
(x⟨y⟩.P1 +M) | (x(z).P2 +N) −→ P1 | P2{y/z}

(par) P −→ P ′

P |Q −→ P ′ |Q
(res) P −→ P ′

(νx)P −→ (νx)P ′

Concurrency Theory – The π-Calculus 4

Mobility – Scope Extrusion

Q = (νz)(x⟨z⟩.P |R) | x(y).Q

with z /∈ fn(P) ∪ fn(Q).

Then Q −→ P | (νz)(R |Q{z/y}) since

1. (x⟨z⟩.P) | (x(y).Q) −→ P |Q{z/y} due to (react) and (struct);
2. (x⟨z⟩.P) | (x(y).Q) |R −→ P |Q{z/y} |R due to 1 and (par);
3. x⟨z⟩.P |R | x(y).Q −→ P |R |Q{z/y} due to 2 and (struct);
4. (νz)(x⟨z⟩.P |R | x(y).Q) −→ (νz)(P |R |Q{z/y}) due to 3 and (res);
5. (νz)(x⟨z⟩.P |R) | x(y).Q −→ P | (νz)(R |Q{z/y}) due to 4 and (struct).

Such a behavior is also called scope extrusion.

Concurrency Theory – The π-Calculus 5

The Polyadic π-Calculus

Every name n ∈ N has an arity ar(n) ∈ N. A polyadic input prefix is an expression
x(y1, . . . , yk) where ar(x) = k. A polyadic output prefix is an expression x⟨z1, . . . , zk⟩
where ar(x) = k.

The polyadic π-calculus Pπ
poly is the π-calculus using polyadic input/output prefixes.

The reduction semantics is lifted to account for polyadic reactions.

Encoding Pπ
poly 7→ Pπ:

1. x(z1, . . . , zar(x)).P 7→ x(z1).x(z2). · · · .x(zar(x)).P ′ and
x(y1, . . . , yar(x)).Q 7→ x⟨y1⟩. · · · .x⟨yar(x)⟩.Q′

(where P ′ and Q′ are likewise translated processes)
2. x(z1, . . . , zar(x)).P 7→ x(w).w(z1). · · · .w(zar(x)).Q′ and

x⟨y1, . . . , yar(x)⟩ 7→ (νa)(x(a).a⟨y1⟩. · · · .a⟨yar(x)⟩.Q′)

Concurrency Theory – The π-Calculus 6

π-Calculus with Process Calls

Additional processes to the ones in Pπ
poly are process constants A⟨x⃗⟩. Such a process

constant comes with a defining equation A(y⃗) := QA, for which

QA = · · ·A⟨u⃗⟩ · · ·A⟨v⃗⟩ · · ·

and A may be called within a process

P = · · ·A⟨w⃗⟩ · · ·A⟨z⃗⟩ · · ·

Encoding Process Calls in Pπ
poly:

1. invent new name callA for each process constant A;
2. in every process R, replace A⟨w⃗⟩ by callA, yielding R̂;
3. replace the definition of P bŷ̂

P = (νcallA)(P̂ |!callA(x⃗).Q̂A)Concurrency Theory – The π-Calculus 7

Visible Actions

The set of π-calculus actions is given by

π ::= xy xy x(z) τ

where x, y, z ∈ N .

Free Output: represented by action π = xy, where x is the so-called subject of π
(subj(π) = x), y its object (obj(π) = y), fn(π) = {x, y}, bn(π) = ∅,
n(π) = {x, y}, πσ = xσyσ.

Input: π = xy, where subj(π) = x, obj(π) = y, fn(π) = {x, y}, bn(π) = ∅,
n(π) = {x, y}, and πσ = xσyσ.

Bound Output: π = x(z), where subj(π) = x, obj(π) = z, fn(π) = {x},
bn(π) = {z}, n(π) = {x, y}, and πσ = xσ(z).

Let us denote the set of all π-Calculus actions by Aπ.
Concurrency Theory – The π-Calculus 8

LTS Semantics of the π-Calculus

Pπ defines an LTS (Pπ,Aπ,−→) where −→ is the smallest transition relation, satisfying
the following rules.

(out)
x⟨y⟩.P xy−→ P

(inp)
x(z).P

xy−→ P{y/z}
(tau)

τ.P
τ−→ P

(mat)
π.P

α−→ P ′

[x = x]π.P
α−→ P ′

(sum-l)
P

α−→ P ′

P +Q
α−→ P ′

(sum-r)
Q

α−→ Q′

P +Q
α−→ Q′

(par-l)
P

α−→ P ′ bn(α) ∩ fn(Q) = ∅
P |Q α−→ P ′ |Q

(par-r)
Q

α−→ Q′ bn(α) ∩ fn(P) = ∅
P |Q α−→ P |Q′

(comm-l)
P

xy−→ P ′ Q
xy−→ Q′

P |Q τ−→ P ′ |Q′
(comm-r)

P
xy−→ P ′ Q

xy−→ Q′

P |Q τ−→ P ′ |Q′

Concurrency Theory – The π-Calculus 9

LTS Semantics of the π-Calculus (cont’d)

(close-l)
P

x(z)−−→ P ′ Q
xz−→ Q′ z /∈ fn(Q)

P |Q τ−→ (νz)(P ′ |Q′)
(close-r) · · ·

· · ·

(res)
P

α−→ P ′ z /∈ n(α)

(νz)P
α−→ (νz)P ′

(open)
P

xz−→ P ′ x ̸= z

(νz)P
x(z)−−→ P ′

(rep-act)
P

α−→ P ′

!P
α−→ P ′|!P

(rep-comm)
P

xy−→ P ′ P
xy−→ P ′′

!P
τ−→ (P ′ | P ′′)|!P

(rep-close)
P

x(z)−−→ P ′ P
xz−→ P ′′ z /∈ fn(P)

!P
τ−→ (νz)(P ′ | P ′′)|!P

(alpha)
P ≡α P ′ P

α−→ Q Q ≡α Q′

P ′ α−→ Q′

Concurrency Theory – The π-Calculus 10

Properties of LTS

Theorem 1
The LTS (Pπ,Aπ,−→) is image-finite.

The following result is known as the Harmony Lemma:

Theorem 2
(1) P ≡ α−→ P ′ implies P

α−→≡ P ′. (2) P −→ P ′ if, and only if, P τ−→≡ P ′.

Proof Structure: For (1), we show that Q ≡ R and Q
α−→ Q′ implies there is an R′

with R
α−→ R′ and Q′ ≡ R′.

For (2) and (⇒), P −→ P ′ implies a standard form. For (2) and (⇐), argue by the
inference rules for P τ−→ P ′ that P −→ P ′.

Concurrency Theory – The π-Calculus 11

Observations in the π-Calculus

Definition 3
For each name or co-name µ, define the observability predicate ↓µ by

1. P ↓x if P
xy−→ for some y ∈ N ;

2. P ↓x if P
xy−→ or P

x(z)−−→ for some y, z ∈ N .

Definition 4
Strong barbed bisimilarity is the largest symmetric relation ∼•, such that P ∼• Q

implies

1. P ↓µ implies Q ↓µ and

2. P
τ−→ P ′ implies Q

τ−→∼• P ′.

Strong barbed congruence is the largest relation ∼c⊆∼•, such that P ∼c Q implies
C[P] ∼• C[Q] for each context C[·].

Theorem 5
P ∼c Q if, and only if, for all substitutions σ and processes R, Pσ |R ∼• Qσ |R.

Concurrency Theory – The π-Calculus 12

The Asynchronous π-Calculus

The asynchronous π-calculus Pπ
a is the following fragment of Pπ:

P ::= x⟨y⟩.0 M P | P ′ (νz)P !P

M ::= 0 x(z).P τ.P M +M ′

Definition 6
Asynchronous barbed bisimilarity is the largest symmetric process relation ∼•

a, such that
P ∼•

a Q implies

1. P ↓x implies Q ⇓x and

2. P
τ−→ P ′ implies Q ⇒∼•

a P ′.

Asynchronous barbed congruence is the largest relation ∼c
a⊆∼•

a, such that P ∼c
a Q

implies C[P] ∼•
a C[Q] for each process context C.

Concurrency Theory – The π-Calculus 13

