
TECHNICAL
R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME
ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Answer-Set Programming Encodings for
Argumentation Frameworks

DBAI-TR-2008-62

Uwe Egly Sarah Alice Gaggl Stefan Woltran

DBAI TECHNICAL REPORT
2008

DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORT DBAI-TR-2008-62, 2008

Answer-Set Programming Encodings for
Argumentation Frameworks

Uwe Egly1 Sarah Alice Gaggl2 Stefan Woltran3

Abstract. We present reductions from Dung’s argumentation framework (AF) and gener-
alizations thereof to logic programs under the answer-set semantics. The reduction is based
on a fixed disjunctive datalog program (the interpreter) and its input which is the only part
depending on the AF to process. We discuss the reductions, which are the basis for the sys-
tem ASPARTIX in detail and show their adequacy in terms of computational complexity.

1Institute for Information Systems 184/3, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: uwe@kr.tuwien.ac.at

2Technische Universität Wien, E-mail: e0026566@student.tuwien.ac.at
3Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-

enna, Austria. E-mail: woltran@dbai.tuwien.ac.at

Acknowledgements: The authors would like to thank Wolfgang Faber for comments on an earlier
draft of this paper. This work was partially supported by the Austrian Science Fund (FWF) under
grant P20704-N18.

This is an extended version of a paper published in the Proceedings of the ICLP’08 Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP’08).

Copyright c© 2008 by the authors

1 Motivation
Dealing with arguments and counter-arguments in discussions is a daily life process. We usually
employ this process to convince our opponent to our point of view. As everybody knows, this is
sometimes a cumbersome activity because we miss a formal reasoning procedure for argumenta-
tion.

This problem is not new. Leibniz (1646–1716) was the first who tried to deal with arguments
and their processing by reasoning in a more formal way. He proposed to use a lingua charac-
teristica (a knowledge representation (KR) language) to formalize arguments and a calculus ra-
tiocinator (a deduction system) to reason about them. Although Leibniz’s dream of a complete
formalization of science was destroyed in the thirties of the last century, restricted versions of
Leibniz’s dream survived.

In Artificial Intelligence (AI), the area of argumentation (see [6] for an excellent summary) has
become one of the central issues within the last decade, providing a formal treatment for reasoning
problems arising in a number of interesting applications fields, including Multi-Agent Systems
and Law Research. In a nutshell, argumentation frameworks formalize statements together with a
relation denoting rebuttals between them, such that the semantics gives an abstract handle to solve
the inherent conflicts between statements by selecting admissible subsets of them. The reasoning
underlying such argumentation frameworks turned out to be a very general principle capturing
many other important formalisms from the areas of AI and Knowledge Representations.

The increasing interest in argumentation led to numerous proposals for formalizations of argu-
mentation. These approaches differ in many aspects. First, there are several ways how “admissibil-
ity” of a subset of statements can be defined; second, the notion of rebuttal has different meanings
(or even additional relationships between statements are taken into account); finally, statements
are augmented with priorities, such that the semantics yields those admissible sets which contain
statements of higher priority.

Argumentation problems are in general intractable, thus developing dedicated algorithms for
the different reasoning problems is non-trivial. A promising approach to implement such systems
is to use a reduction method, where the given problem is translated into another language, for
which sophisticated systems already exist. Earlier work [7, 17] proposed reductions for basic ar-
gumentation frameworks to (quantified) propositional logic. In this work, we present solutions for
reasoning problems in different types of argumentation frameworks by means of computing the an-
swer sets of an (extended) datalog program. To be more specific, the system is capable to compute
the many important types of extensions (i.e., admissible, preferred, stable, semi-stable, complete,
and grounded) in Dung’s original framework [13], the preference-based argumentation framework
[1], the value-based argumentation framework [5], and the bipolar argumentation framework [2, 9].
Hence our system can be used by researchers to compare different argumentation semantics on con-
crete examples within a uniform setting. In fact, investigating the relationship between different
argumentation semantics has received increasing interest lately [3].

The declarative programming paradigm of Answer-Set Programming (ASP) [22, 24] under the
stable-models semantics [21] (which is our target formalism) is especially well suited for our pur-
pose. First, advanced solvers such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT which

2

are able to deal with large problem instances (see [20]) are available. Thus, using the proposed
reduction method delegates the burden of optimizations to these systems. Second, language exten-
sions such systems offer can be used to employ different extensions to AFs, which so far have not
been studied (for instance, weak constraints or aggregates could yield interesting specially tailored
problems for AFs). Finally, depending on the class of the program one uses for a given type of
extension, one can show that, in general, the complexity of evaluation within the target formal-
ism is of the same complexity as the original problem. Thus, our approach is adequate from a
complexity-theoretic point of view.

With the fixed logic program (independent from the concrete AF to process), we are more in the
tradition of a classical implementation, because we construct an interpreter in ASP which processes
the AF given as input. This is in contrast to, e.g., the reductions to (quantified) propositional logic
[7, 17], where one obtains a formula which completely depends on the AF to process. Although
there is no advantage of the interpreter approach from a theoretical point of view (as long as
the reductions are polynomial-time computable), there are several practical ones. The interpreter
is easier to understand, easier to debug, and easier to extend. Additionally, proving properties
like correspondence between answer sets and extensions is simpler. Moreover, the input AF can
be changed easily and dynamically without translating the whole formula which simplifies the
answering of questions like “What happens if I add this new argument?”.

Our system makes use of the prominent answer-set solver DLV [22]. All necessary programs
to run ASPARTIX and some illustrating examples are available at

http://www.kr.tuwien.ac.at/research/systems/argumentation/

2 Preliminaries
In this section, we first give a brief overview of the syntax and semantics of disjunctive datalog
under the answer-sets semantics [21]; for further background, see [18, 22].

We fix a countable set U of (domain) elements, also called constants; and suppose a total order
< over the domain elements. An atom is an expression p(t1, . . .,tn), where p is a predicate of arity
n ≥ 0 and each ti is either a variable or an element from U . An atom is ground if it is free of
variables. By BU we denote the set of all ground atoms over U .

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b1, . . . , bm are atoms, and “not ”
stands for default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a constraint if n = 0. A rule r is safe if each
variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A fact is a disjunctive-
free ground rule with an empty body. An input (database) is a finite set of facts. A program is
a finite set of disjunctive rules. For a program P and an input database D, we often write P(D)
instead of D ∪ P . If each rule in a program is normal (resp. ground), we call the program normal

3

stratified programs normal programs general case
|=c P NP ΣP

2

|=s P coNP ΠP
2

Table 1: Data Complexity for datalog (all results are completeness results).

(resp. ground). A program P is called stratified if there exists an assignment a(·) of integers to
the predicates in P , such that for each rule r ∈ P the following holds: If predicate p occurs in the
head of r and predicate q occurs

(i) in the positive body of r, then a(p) ≥ a(q) holds;

(ii) in the negative body of r, then a(p) > a(q) holds.

For any program P , let UP be the set of all constants appearing in P (if no constant appears in
P , an arbitrary constant is added to UP), and let BP be the set of all ground atoms constructible
from the predicate symbols appearing in P and the constants of UP . Moreover,Gr(P) is the set of
rules rσ obtained by applying, to each rule r ∈ P , all possible substitutions σ from the variables
in P to elements of UP .

An interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I)= ∅ whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground program P , if each r ∈ P is satisfied by I . A non-ground
rule r (resp., a program P) is satisfied by an interpretation I ⊆ BU iff I satisfies all groundings
of r (resp., Gr(P)). I ⊆ BU is an answer set of P iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct

PI = {H(r) :-B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(P)}.

For a programP , we denote the set of its answer sets byAS(P). We note that for each I ∈ AS(P),
I ⊆ BP holds.

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program
P and a set of ground atoms A. Then, we write P |=c A (credulous reasoning), if A is contained
in some answer set of P; we write P |=s A (skeptical reasoning), if A is contained in each answer
set of P .

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will
deal with fixed programs, we focus on results for data complexity. Recall that data complexity in
our context is the complexity of checking whether P (D) |= A when programs P are fixed, while
input databases D and ground atoms A are an input of the decision problem. Depending on the
concrete definition of |=, we give the complexity results in Table 1 (cf. [11] and the references
therein).

Finally, we recall the concepts of splitting sets [23]. Given a program P , a set U of predicates
is a splitting set for P , if and only if, for every rule r ∈ P , it holds if some predicate from U occurs
in the head of r, then each predicate in r is from U as well. Any splitting set U for program P

4

divides P in two parts. The top P t
U of P contains all rules of P which have an occurrence of a

predicate not contained in U , while the bottom P b
U of P is defined as P \ P t

U . Splitting sets allow
to compute the answer sets of a program P step-by-step due to the following result (the splitting
theorem): Let U be a splitting set of a program P , I ⊆ BU . Then, I ∈ AS(P) if and only if
I ∈ AS(P t

U(J)), where J = I ∩ BP b
U
is contained in AS(P b

U).

3 Encodings of Basic Argumentation Frameworks
In this section, we first introduce the most important semantics for basic argumentation frameworks
in some detail. In a distinguished section, we then provide encodings for these semantics in terms
of datalog programs.

3.1 Basic Argumentation Frameworks
In order to relate frameworks to programs, we use the universe U of domain elements also in the
following basic definition.

Definition 3.1 An argumentation framework (AF) is a pair F = (A, R) where A ⊆ U is a set of
arguments and R ⊆ A × A. The pair (a, b) ∈ R means that a attacks (or defeats) b. A set S ⊆ A
of arguments defeats b (in F), if there is an a ∈ S, such that (a, b) ∈ R. An argument a ∈ A is
defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if (b, a) ∈ R, then S defeats b (in F).

An argumentation framework can be naturally represented as a directed graph.

Example 3.2 Let F = (A, R) be an AF with A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)}. The graph representation of F is the following.

a b c d e

Figure 1: Graph of Example 3.2.

In order to be able to reason about such frameworks, it is necessary to group arguments with
special properties to extensions. One of the basic properties is the absence of conflicts between
arguments contained in an extension.

Definition 3.3 Let F = (A, R) be an AF. A set S ⊆ A is said to be conflict-free (in F), if there
are no a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free (in
F) by cf (F).

5

For our example framework F = (A, R) from Example 3.2, we have

cf (F) =
{
∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}

}
.

As a first concept of extension, we present the stable extensions which are based on the idea
that an extension should not only be internally consistent but also able to reject the arguments that
are outside the extension.

Definition 3.4 Let F = (A, R) be an AF. A set S is a stable extension of F , if S ∈ cf (F) and
each a ∈ A \ S is defeated by S in F . We denote the collection all of stable extensions of F by
stable(F).

The framework F from Example 3.2 has a single stable extension {a, d}. Indeed {a, d} is
conflict-free, and each further element b, c, e is defeated by either a or d. In turn, {a, c} for instance
is not contained in stable(F), although it is conflict-free as well. The obvious reason is that e is
not defeated by {a, c}.

Stable semantics in terms of argumentation are considered to be quite restricted. Moreover, it is
not guaranteed that a framework possesses at least one stable extension (consider, e.g., the simple
cyclic framework ({a}, {(a, a)})). Therefore it is also reasonable to consider those arguments
which are able to defend themselves from external attacks, like the admissible semantics proposed
by Dung [13].

Definition 3.5 Let F = (A, R) be an AF. A set S is an admissible extension of F , if S ∈ cf (F)
and each a ∈ S is defended by S in F . We denote the collection of all admissible extensions of F
by adm(F).

For the framework F from Example 3.2, we obtain,

adm(F) =
{
∅, {a}, {c}, {d}, {a, c}, {a, d}

}
.

By definition, the empty set is always an admissible extension, therefore reasoning over admissible
extensions is also limited. In fact, some reasoning (for instance, given an AF F = (A, R), and
a ∈ A, is a contained in any extension of F) becomes trivial wrt admissible extensions. Thus,
many researchers consider maximal (wrt set-inclusion) admissible sets, called preferred extensions,
as more important.

Definition 3.6 Let F = (A, R) be an AF. A set S is a preferred extension of F , if S ∈ adm(F)
and for each T ∈ adm(F), S)⊂ T . We denote the collection of all preferred extensions of F by
pref (F).

Obviously, the preferred extensions of framework F from Example 3.2 are {a, c} and {a, d}.
We note that each stable extension is also preferred, but the converse does not hold, as witnessed
by this example.

The next semantics we consider is the semi-stable semantics, recently introduced by Cami-
nada [8] and investigated also in [16]. Semi-stable semantics are located in-between stable and

6

preferred semantics, in the sense that each stable extension of an argumentation framework F is
also a semi-stable extension of F , and each semi-stable extension of F is a preferred extension
of F . However, in general both inclusions do not hold in the opposite direction. In contrast to
the stable semantics, semi-stability guarantees that there exists at least one extension. We use the
definition given in [16].

Definition 3.7 Let F = (A, R) be an AF, and for a set S ⊆ A, let S+
R be defined as S ∪ {b | ∃a ∈

S, such that (a, b) ∈ R}. A set S is a semi-stable extension of F , if S ∈ adm(F) and for each
T ∈ adm(F), S+

R)⊂ T+
R , We denote the collection of all semi-stable extensions of F by semi(F).

For our example framework (A, R), the only semi-stable extension coincides with the stable
extension T = {a, d}. In contrast, S = {a, c} is not semi-stable, because S+

R = {a, b, c, d} ⊂
{a, b, c, d, e} = T+

R .
Finally, we introduce complete and grounded extensions which Dung considered as skeptical

counterparts of admissible and preferred extensions, respectively.

Definition 3.8 Let F = (A, R) be an AF. A set S is a complete extension of F , if S ∈ adm(F)
and, for each a ∈ A defended by S (in F), a ∈ S holds. The least (wrt set inclusion) complete
extension of F is called the grounded extension of F . We denote the collection of all complete
(resp., grounded) extensions of F by comp(F) (resp., ground(F)).

The complete extensions of framework F from Example 3.2 are {a, c}, {a, d}, and {a}, with
the last being also the grounded extensions of F .

This concludes our collection of argumentation semantics, we consider in this paper. The
relations between the semantics are depicted in Figure 2, where an arrow from e to f indicates that
each e-extension is also a f -extension.

stable

semi-stable

preferred grounded

complete

admissible

Figure 2: Overview of argumentation semantics and their relations.

We briefly review the complexity of reasoning in AFs. To this end, we define the following
decision problems for e ∈ {stable, adm, pref , semi , comp, ground}:

7

stable adm pref semi comp ground

Crede NP-c NP-c NP-c in ΣP
2 NP-c in P

Skepte coNP-c (trivial) ΠP
2 -c in ΠP

2 in P in P

Table 2: Complexity for decision problems in argumentation frameworks.

• Crede: Given AF F = (A, R) and a ∈ A. Is a contained in some S ∈ e(F)?

• Skepte: Given AF F = (A, R) and a ∈ A. Is a contained in each S ∈ e(F)?

The complexity results are depicted in Table 2 (many of them follow implicitly from [12], for
the remaining results and discussions see [10, 15, 16]). In the table, “C-c” refers to a problemwhich
is complete for class C, while “in C” is assigned to problems for which a tight lower complexity
bound is not known. A few further comments are in order. We already mentioned that skeptical
reasoning over admissible extensions always is trivially false. Moreover, we note that credulous
reasoning over preferred extensions is easier than skeptical reasoning. This is due to the fact that
the additional maximality criterion only comes into play for the latter task. Indeed for credulous
reasoning the following simple makes clear why there is no increase in complexity compared to
credulous reasoning over admissible extensions: a is contained in some S ∈ adm(F) iff a is
contained in some S ∈ pref (F). A similar argument immediately shows why skeptical reasoning
over complete extensions reduces to skeptical reasoning over the grounded extension. Finally, we
recall that reasoning over the grounded extension is tractable [13]:

Proposition 3.9 The grounded extension of an AF F = (A, R) is given by the least fix-point of the
operator ΓF : 2A → 2A, defined as ΓF (S) = {a ∈ A | a is defended by S in F}.

3.2 Encodings
We now provide a fixed encoding πe for each extension of type e introduced so far, in such a way
that the AF F is given as an input database F̂ and the answer sets of the combined program πe(F̂)
are in a certain one-to-one correspondence with the respective extensions (with some additions,
we can of course combine the different encodings into a single program, where the user just has
to specify which type of extensions she wants to compute). Note that having established the fixed
program πe, the only translation required is to provide a given AF F as input database F̂ to πe. In
fact, for an AF F , we define F̂ as

F̂ = {arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R}.

In most cases, we have to guess candidates for the selected type of extensions and then check
whether a guessed candidate satisfies the corresponding conditions. We use unary predicates in(·)
and out(·) to perform such a guess for a set S ⊆ A, where in(a) represents that a ∈ S. Thus the
following notion of correspondence is relevant for our purposes.

8

Definition 3.10 Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a
collection of sets of ground atoms. We say that S and I correspond to each other, in symbols
S ∼= I, iff |S| = |I| and for each S ∈ S, there exists an I ∈ I, such that {a | in(a) ∈ I} = S.

Let F = (A, R) an argumentation framework. The following program fragment guesses, when
augmented by F̂ , any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X) :- not out(X), arg(X);

out(X) :-not in(X), arg(X);

:- in(X), in(Y), defeat(X, Y)}.

Proposition 3.11 For any AF F , cf (F) ∼= AS(πcf (F̂)).

For our example framework F from Example 3.2, we have as input

F̂ = { arg(a), arg(b), arg(c), arg(d), arg(e),

defeat(a, b), defeat(c, b), defeat(c, d), defeat(d, c), defeat(d, e), defeat(e, e) }.

Moreover, using F̂ together with πcf , we obtain:

AS(πcf (F̂)) = {S∅, Sa, Sb, Sc, Sd, Sac, Sad, Sbd},

where we denote by Sα the following sets:

S∅ = F̂ ∪ {out(a), out(b), out(c), out(d), out(e)},

Sa = F̂ ∪ {in(a), out(b), out(c), out(d), out(e)},

Sb = F̂ ∪ {out(a), in(b), out(c), out(d), out(e)},

Sc = F̂ ∪ {out(a), out(b), in(c), out(d), out(e)},

Sd = F̂ ∪ {out(a), out(b), out(c), in(d), out(e)},

Sac = F̂ ∪ {in(a), out(b), in(c), out(d), out(e)},

Sad = F̂ ∪ {in(a), out(b), out(c), in(d), out(e)},

Sbd = F̂ ∪ {out(a), in(b), out(c), in(d), out(e)}.

We are now already well prepared to present the first encoding which is concerned with stable
extensions. The additional rules for the stability test are as follows:

πstable = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

:- out(X), not defeated(X)}.

The first rule computes those arguments attacked by the current guess, while the constraint
eliminates those guesses where some argument not contained in the guess remains undefeated.

9

For our example, let us first consider the collection C of answer sets of πcf (F̂) ∪
{defeated(X) :- in(Y), defeat(Y, X)}. Note that we can use the splitting theorem and, there-
fore, make direct use of the answer sets of πcf (F̂). In fact, using our calculations from above we
obtain

C =
{

S∅,

Sa ∪ {defeated(b)},

Sb,

Sc ∪ {defeated(b), defeated(d)},

Sd ∪ {defeated(c), defeated(e)},

Sac ∪ {defeated(b), defeated(d)},

Sad ∪ {defeated(b), defeated(c), defeated(e)},

Sbd ∪ {defeated(c), defeated(e)}
}
.

If we now apply the constraint :- out(X), not defeated(X) to each element in C, we observe
that any set from C except Sad ∪ {defeated(b), defeated(c), defeated(e)} is violated by that con-
straint. In fact, each other set contains at least one atom out(y) without the matching defeated(y).

In general, our encoding for stable extensions satisfies the following correspondence result.

Proposition 3.12 For any AF F , stable(F) ∼= AS(πstable(F̂)).

Next, we give the additional rules for the admissibility test:

πadm = πcf ∪ { defeated(X) :- in(Y), defeat(Y, X);

:- in(X), defeat(Y, X), not defeated(Y)}.

The first rule is the same as in πstable . The new constraint rules out sets containing a non-
defended argument. Indeed, we can identify non-defended arguments as those, which are defeated
by an argument, which itself is undefeated.

For our example framework, we thus can start from set C as above but now we check which
sets violate the new constraint :- in(X), defeat(Y, X), not defeated(Y). This is the case for two
of the candidates. (1) Sb contains in(b) and defeat(a, b) but since defeated(a) is not contained,
the constraint applies; (2) for Sbd ∪ {defeated(c), defeated(e)} the argumentation is analogously.
Hence, we obtain

AS(πadm(F̂)) =
{

S∅,

Sa ∪ {defeated(b)},

Sc ∪ {defeated(b), defeated(d)},

Sd ∪ {defeated(c), defeated(e)},

Sac ∪ {defeated(b), defeated(d)},

Sad ∪ {defeated(b), defeated(c), defeated(e)}
}
.

Again, we observe the one-to-one correspondence to the admissible extensions of F . The
general result is as follows.

10

Proposition 3.13 For any AF F , adm(F) ∼= AS(πadm(F̂)).

We proceed with the encoding for complete extensions, which is also quite straightforward.
We define

πcomp = πadm ∪ {not defended(X) :-defeat(Y, X), not defeated(Y);

:- out(X), not not defended(X)}.

Once more, we use our running example to illustrate the functioning of πcomp . Again,
we proceed in two steps and first compute the answer sets of the program without the con-
straint :- out(X), not not defended(X). Here, we can directly use the sets from AS(πadm(F̂))
and check which predicates not defended(·) can be derived. The answer sets of πadm(F̂) ∪
{not defended(X) :-defeat(Y, X), not defeated(Y)} are

S∅ ∪ {not defended(b),not defended(c),not defended(d),not defended(e)},

Sa ∪ {defeated(b),not defended(b),not defended(c),not defended(d),not defended(e)},

Sc ∪ {defeated(b),defeated(d),not defended(b),not defended(d),not defended(e)},

Sd ∪ {defeated(c),defeated(e),not defended(b),not defended(c),not defended(e)},

Sac ∪ {defeated(b),defeated(d),not defended(b),not defended(d),not defended(e)},

Sad ∪ {defeated(b),defeated(c),defeated(e),not defended(b),not defended(c),not defended(e)}.

Obviously, each candidate which contains out(a) is ruled out by the constraint
:- out(X), not not defended(X), since no candidate set contains not defended(a). One can
check that all other sets do not violate the constraint, and thus are answer sets of πcomp(F̂). Again,
these remaining three sets characterize the complete extensions of F , as desired.

Proposition 3.14 For any AF F , comp(F) ∼= AS(πcomp(F̂)).

We now turn to the grounded extension. For suitably encoding the operator ΓF , we can come
up with a stratified program for this task. Note that in a stratified program it is not possible to first
guess a candidate for the extension and then check whether the guess satisfies certain conditions.
Instead, we “fill” the in(·)-predicate according to the definition of the operator ΓF . To compute
(without unstratified negation) the required predicate for being defended, we now make use of the
order < over the domain elements and derive corresponding predicates for infimum, supremum,
and successor.

π< = { lt(X, Y) :- arg(X), arg(Y), X < Y ;

nsucc(X, Z) :- lt(X, Y), lt(Y, Z);

succ(X, Y) :- lt(X, Y), not nsucc(X, Y);

ninf(Y) :- lt(X, Y);

inf(X) :- arg(X), not ninf(X);

nsup(X) :- lt(X, Y);

sup(X) :- arg(X), not nsup(X)}.

11

We now define the desired predicate defended(X) which itself is obtained via a predicate
defended upto(X, Y) with the intended meaning that argument X is defended by the current
assignment with respect to all arguments U ≤ Y . In other words, we let range Y starting from
the infimum and then using the defined successor predicate to derive defended upto(X, Y) for
“increasing” Y . If we arrive at the supremum element in this way, we finally derive defended(X).
We define

πdefended = { defended upto(X, Y) :- inf(Y), arg(X), not defeat(Y, X);

defended upto(X, Y) :- inf(Y), in(Z), defeat(Z, Y), defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

not defeat(Y, X);

defended upto(X, Y) :- succ(Z, Y), defended upto(X, Z),

in(V), defeat(V, Y), defeat(Y, X);

defended(X) :- sup(Y), defended upto(X, Y)}, and
πground = π< ∪ πdefended ∪ {in(X) :-defended(X)}.

Note that πground is indeed stratified.
We illustrate the building blocks for πground using our example framework F . Moreover, we

assume as order a < b < c < d < e. For this order, π< yields a single answer set S0 which
contains (among other atoms, which will not be used in later calculations):

{inf(a), succ(a, b), succ(b, c), succ(c, d), succ(d, e), sup(e)} ⊆ S0

We now compute the answer set for F̂ ∪ π< ∪ πdefended step by step. In the “first round” we
have no in(·) predicate derived so far, hence only the first and third rule in πdefended are of interest.
In fact, for inf(a), the first rule in πdefended yields:

defended upto(a, a), defended upto(c, a), defended upto(d, a), defended upto(e, a);

note that defended upto(b, a) is missing, since we have defeat(a, b) ∈ F̂ . Now we use succ(a, b)
and obtain

defended upto(a, b), defended upto(c, b), defended upto(d, b), defended upto(e, b).

The remaining atoms we derive are

defended upto(a, c), defended upto(c, c), defended upto(e, c);

(since d is attacked by c, defended upto(d, c) cannot be derived) and finally,

defended upto(a, d), defended upto(a, e).

Hence, we obtain defended(a) via sup(e) and defended upto(a, e). Moreover, the rule
in(X) :-defended(X) derives in(a). We now can use the additional fact in(a) for a second round

12

of evaluating πdefended , in particular, by using the second and fourth rule in πdefended . However, as
a does not defend any argument, it can be checked that no further atoms can be derived. Thus we
obtain that in the single answer set of πground (F̂) the only in(·) predicate is in(a). However, this
corresponds to the grounded extensions of F .

Proposition 3.15 For any AF F , ground(F) ∼= AS(πground (F̂)).

Obviously, we could have used the defended(·) predicate in previous programs. Indeed, πcomp

could be defined as

πcf ∪ πdefended ∪ { :- in(X), not defended(X); :- out(X), defended(X)}.

We continue with the more involved encodings for preferred and semi-stable extensions. Com-
pared to the one for admissible extensions, these encodings require an additional maximality test.
However, this is sometimes quite complicate to encode (see also [19] for a thorough discussion on
this issue).

In fact, to compute the preferred extensions, we will use a saturation technique as follows:
Having computed an admissible extension S (characterized via predicates in(·) and out(·)) , we
perform a second guess using new predicates, say inN(·) and outN(·), such that they represent a
guess T ⊃ S. For that guess, we will use disjunction (rather than default negation), which allows
that for each a both inN(a) and outN(a) are contained in a possible answer set (under certain
conditions). In fact, exactly such answer sets will correspond to the preferred extensions. The
saturation is therefore performed in such a way that all predicates inN(a) and outN(a) are derived
for those T , which do not characterize an admissible extension. If this saturation succeeds for each
T ⊃ S, we want that saturated interpretation to become an answer set. This can be done by using
a saturation predicate spoil, which is handled via a constraint :- not spoil. This ensures that only
saturated guesses survive.

Such saturation techniques always require a restricted use of negation. The predicates defined
in π< will serve for this purpose. Two new predicates are needed: predicate eq which indicates
whether a guess T represented by atoms inN(·) and outN(·) is equal to the guess for S (represented
by atoms in(·) and out(·)). The second predicate we define is undefeated(X) which indicates that
X is not defeated by any element from T . Both predicates are computed via predicates eq upto(·)
(resp. undefeated upto(·, ·)) in the same manner as we used defended upto(·, ·) for defended(·)
in the module πdefended above:

πeq = { eq upto(Y) :- inf(Y), in(Y), inN(Y);

eq upto(Y) :- inf(Y), out(Y), outN(Y);

eq upto(Y) :- succ(Z, Y), in(Y), inN(Y), eq upto(Z);

eq upto(Y) :- succ(Z, Y), out(Y), outN(Y), eq upto(Z);

eq :- sup(Y), eq upto(Y)};

13

πundefeated = { undefeated upto(X, Y) :- inf(Y), outN(X), outN(Y);

undefeated upto(X, Y) :- inf(Y), outN(X), not defeat(Y, X);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

outN(Y);

undefeated upto(X, Y) :- succ(Z, Y), undefeated upto(X, Z),

not defeat(Y, X);

undefeated(X) :- sup(Y), undefeated upto(X, Y)}.

With these predicates at hand, we next define the spoiling module for preferred extensions:

πspoilpref = { inN(X) ∨ outN(X) :- out(X); inN(X) :- in(X); (1)
spoil :- eq; (2)
spoil :- inN(X), inN(Y), defeat(X, Y); (3)
spoil :- inN(X), outN(Y), defeat(Y, X), undefeated(Y); (4)
inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X); (5)
:-not spoil}. (6)

We define
πpref = πadm ∪ π< ∪ πeq ∪ πundefeated ∪ πspoilpref .

When joined with F̂ for some AF F = (A, R), the rules of πspoilpref work as follows: Rules
(1) guess a new set T ⊆ A (via predicates inN(·) and outN(·)), which compares to the guess
S ⊆ A (S is characterized by predicates in(·) and out(·) as used in πadm) as S ⊆ T . In case
T = S, we obtain predicate eq and derive predicate spoil (by rule (2)). The remaining guesses for
T are now handled as follows. First, rule (3) derives predicate spoil if the new guess T contains a
conflict. Second, rule (4) derives spoil if the new guess T contains an element which is attacked
by an argument outside T which itself is undefeated (by T). Hence, we derived spoil for those
S ⊆ T where either S = T or T did not correspond to an admissible extension of F . We now
finally spoil up the current guess and derive all inN(a) and outN(a) in rules (5). Recall that due
to constraint (6) such spoiled interpretations are the only candidates for answer sets. To turn them
into an answer set, it is however necessary that we spoiled for each T , such that S ⊆ T ; but by
definition this is exactly the case if S is a preferred extension.

To illustrate how πpref applies to our example framework, note that a step-by-step evaluation
as used before is no longer possible. In particular, the sub-program Π = πeq ∪ πundefeated ∪ πspoil

has to be treated as once, due to the cyclic dependencies among the atoms (in other words, we
only obtain trivial splitting sets for Π). However, we can still split πpref into πadm ∪ π< and Π. We
already know the single answer set S0 of π<(F̂) and the collection AS(πadm(F̂)) of answer sets
of πadm (F̂). As is easily checked, we thus get AS(F̂ ∪ πadm ∪ π<) = {S0 ∪ S | S ∈ πadm(F̂)}.
Hence, let us illustrate the functioning of Π for the two inputs1 S1 = S0 ∪ Sa and S2 = S0 ∪ Sac.
Indeed, we expect that S1 does not lead to an answer set of πpref (F̂), while the second set S2

1We omit the further atoms from the corresponding answer sets in F̂ ∪ πadm ∪ π<, since they play no role in Π.

14

corresponds to a preferred extension of F , and thus should be part of an answer set of πpref (F̂). As
discussed above, the only potential answer set I1 of Π(S1) contains contains S1 as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (7)

We next check whether some J1 ⊂ I1 satisfies Π(S1)I1 = Π(S1) \ { :-not spoil}. If this is not the
case, I1 becomes an answer set. Indeed, one can check that

Sa ∪ {inN(a), outN(b), inN(c), outN(d), outN(e)}

satisfies Π(S1)I1 . This can be seen as follows: this set does not contain spoil, thus the bodies of
rules (2–4) must not be satisfied. For the first rule this is the case since eq is not derived (we leave
it to the reader to check this), for the second rule this is the case as well, since the vertices for
which inN(·) holds are not adjacent. Finally, for (4), we first mention that πundefeated is derived
for the following instantiations undefeated(a), undefeated(c), undefeated(e). One can now check
that the bodies of (4) are not satisfied. As well, rules (5) are not applied (since spoil has not been
derived). Thus, we found a proper subset J1 of I1, such that J1 |= Π(S1)I1 . Consequently, I1

cannot be an answer set of Π(S1) and thus not of πpref (F̂).
The situation is different for set S2 = S0 ∪ Sac. As before the only potential answer set I2 of

Π(S2) contains S2 as well as atoms

inN(a), outN(a), inN(b), outN(b), inN(c), outN(c), inN(d), outN(d), inN(d), outN(e), spoil. (8)

Moreover, Π(S2)I2 = Π(S2) \ { :- not spoil} as before, and we thus seek for sets J2 ⊂ I2, such
that J2 |= Π(S2)I2 . Note that rule (1) guarantees that J2 contains at least inN(a), inN(c) but
further inN(·) predicates could be contained in J2. However, if the only inN(·) predicates in J2

are inN(a), inN(c), predicate eq is derived and we spoil. As well, if a further inN(·) predicate is
contained in J2 then we already know that such a set characterizes a subset S ′ ⊆ A which cannot
be conflict free. Indeed, rule (3) applies in this case, and we obtain spoil. As soon as spoil is
derived, rules (5) “turn J2 into I2”. From this observation it is clear that we cannot find a J2 ⊂ I2,
such that J2 |= Π(S2)I2 . Thus I2 becomes an answer set of Π(S2) and therefore also of πpref (F̂).
This meets our expectation, since Sac relates to the preferred extension {a, c} of F .

Proposition 3.16 For any AF F , pref (F) ∼= AS(πpref (F̂)).

We conclude our encodings for the different types of extensions with the program for the semi-
stable semantics. The basic intuition for the forthcoming encoding is as for the preferred semantics.
The main difference lies in the fact that, given an admissible extension S for an AF F = (A, R),
we now have to test whether no T ∈ adm(F) with S+

R ⊂ T+
R exists, while for preferred extensions

it was sufficient to test whether no such T of the form S ⊂ T exists. This requires the following
changes. First, we have to guess an arbitrary set T (for preferred extensions we could restrict
ourselves to supersets of S). Then we spoil (as before) in case T is not admissible. Finally, we
explicitly get rid off the cases where S+

R)⊂ T+
R (for preferred extensions, we only had to exclude

15

the case S = T via the predicate eq). Hence, we need a new predicate eqplus which tests for
S+

R = T+
R , and we spoil if eqplus is derived, or in case there exists an a ∈ S+

R not contained in T+
R .

We can reuse the modules πadm , π<, as well as πundefeated and define the following additional
rules

π+
eq = { eqplus upto(Y) :- inf(Y), in(Y), inN(Y);

eqplus upto(Y) :- inf(Y), in(Y), inN(X), defeat(X, Y);

eqplus upto(Y) :- inf(Y), in(X), inN(Y), defeat(X, Y);

eqplus upto(Y) :- inf(Y), in(X), inN(Z), defeat(X, Y), defeat(Z, Y);

eqplus upto(Y) :- inf(Y), out(Y), outN(Y), not defeated(Y), undefeated(Y);

eqplus upto(Y) :- succ(Z, Y), in(Y), inN(Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(Y), inN(X), defeat(X, Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(X), inN(Y), defeat(X, Y), eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), in(X), inN(U), defeat(X, Y), defeat(U, Y),

eqplus upto(Z);

eqplus upto(Y) :- succ(Z, Y), out(Y), outN(Y), not defeated(Y), undefeated(Y),

eqplus upto(Z);

eqplus :- sup(Y), eqplus upto(Y)};

πspoilsemi = { inN(X) ∨ outN(X) :- arg(X);

spoil :- eqplus;

spoil :- inN(X), inN(Y), defeat(X, Y);

spoil :- inN(X), outN(Y), defeat(Y, X), undefeated(Y);

spoil :- in(X), outN(X), undefeated(X);

spoil :- in(Y), defeat(Y, X), outN(X), undefeated(X);

inN(X) :- spoil, arg(X); outN(X) :- spoil, arg(X);

:- not spoil}.

We define
πsemi = πadm ∪ π< ∪ π+

eq ∪ πundefeated ∪ πspoilsemi

and obtain the following result.

Proposition 3.17 For any AF F , semi(F) ∼= AS(πsemi(F̂)).

We summarize the results from this section.

Theorem 3.18 For any AF F and e ∈ {stable, adm, pref , semi , comp, ground}, it holds that
e(F) ∼= AS(πe(F̂)).

16

stable adm pref semi comp ground

Crede πstable(F̂) |=c a πadm(F̂) |=c a πadm(F̂) |=c a πsemi(F̂) |=c a πcomp(F̂) |=c a πground (F̂)|=a

Skept
e

πstable(F̂) |=s a (trivial) πpref (F̂) |=s a πsemi(F̂) |=s a πground (F̂)|=a πground (F̂)|=a

Table 3: Overview of the encodings of the reasoning tasks for AF F = (A, R) and a ∈ A.

We note that our encodings are adequate in the sense that the data complexity of the encodings
mirrors the complexity of the encoded task. In fact, depending on the chosen reasoning task, the
adequate encodings are depicted in Table 3. Recall that credulous reasoning over preferred ex-
tensions reduces to credulous reasoning over admissible extensions and skeptical reasoning over
complete extensions reduces to reasoning over the single grounded extension. The only proper
disjunctive programs involved are πpref and πsemi , all other encodings are disjunction-free. More-
over, πground is stratified. Stratified programs have at most one answer set, hence there is no need
to distinguish between |=c and |=s. If one now assigns the complexity entries from Table 1 to the
encodings as depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision problems using our programs. As a first
example consider the ΠP

2 -complete problem of coherence [15], which decides whether for a given
AF F , pref (F) ⊆ stable(F) (recall that pref (F) ⊇ stable(F) always holds). We can decide this
problem by extending πpref in such a way that an answer-set of πpref survives only if it does not
correspond to a stable extension. By definition, the only possibility to do so is if some undefeated
argument is not contained in the extension.

Corollary 3.19 The coherence problem for an AF F holds iff the program

πpref (F̂) ∪ {v :- out(X), not defeated(X); :-not v}

has no answer set.

As a second example, we give a program which decides, for a given AF F , whether the semi-
stable and the preferred extension of F coincide. This problem has been shown to be ΠP

2 -complete
in [16].

Again, we can decide this problem by reusing some of the modules from previous encodings.
In this particular case, however, we need to separate some of the atoms which are used in common
by πpref and πsemi . For this reason, we require new atoms inNN(·), outNN(·), undefeatedN(·) and
undefeatedN upto(·, ·), and denote by πundefeatedN the program resulting from πundefeated by using
the new atoms instead of inN(·), outN(·), undefeated(·) and undefeated upto(·, ·), respectively.

17

Similarly, we obtain π+
eqN from π+

eq . Consider now the following program

πcoinicde = πpref ∪ πundefeatedN ∪ π+
eqN ∪ {

inNN(X) ∨ outNN(X) :- arg(X);

:- eqplus;

:- inNN(X), inNN(Y), defeat(X, Y);

:- inNN(X), outNN(Y), defeat(Y, X), undefeatedN(Y);

:- in(X), outNN(X), undefeated(X);

:- in(Y), defeat(Y, X), outNN(X), undefeatedN(X)}.

Corollary 3.20 Given an AF F , it holds that semi(F) = pref (F) iff πcoinicde(F̂) has no answer
set.

Roughly speaking we combine here the program which computes the preferred extensions with
a program which checks whether the input is not semi-stable. The latter test can be accomplished
via constraints (instead of the spoiling technique used above), since it is sufficient here to just get
rid off candidates which already have been checked to be preferred but are not semi-stable.

4 Encodings for Generalizations of Argumentation Frame-
works

4.1 Value-Based Argumentation Frameworks
As a first example for generalizing basic AFs, we deal with value-based argumentation frameworks
(VAFs) [5] which themselves generalize the preference-based argumentation frameworks [1].
Again we give the definition wrt the universe U .

Definition 4.1 A value-based argumentation framework (VAF) is a 5-tuple F = (A, R, Σ, σ, <)
where A ⊆ U are arguments, R ⊆ A × A, Σ ⊆ U is a non-empty set of values disjoint from A,
σ : A → Σ assigns a value to each argument from A , and < is a preference relation (irreflexive,
asymmetric) between values.

Let 2 be the transitive closure of <. An argument a ∈ A defeats an argument b ∈ A in F if
and only if (a, b) ∈ R and (b, a) /∈2.

Using this notion of defeat, we say in accordance to Definition 3.1 that a set S ⊆ A of argu-
ments defeats b (in F), if there is an a ∈ S which defeats b. An argument a ∈ A is defended by
S ⊆ A (in F) iff, for each b ∈ A, it holds that, if b defeats a in F , then S defeats b in F . Using these
notions of defeat and defense, the definitions in [5] for conflict-free sets, admissible extensions,
and preferred extensions are exactly along the lines of Definition 3.3, 3.5, and 3.6, respectively.

18

In order to compute these extensions for VAFs, we thus only need to slightly adapt the modules
introduced in Section 3.2. In fact, we just overwrite F̂ for a VAF F as

F̂ = {arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ R} ∪

{val(a, σ(a)) | a ∈ A} ∪ {valpref(w, v) | v < w}

and we require one further module, which now obtains the defeat(·, ·) relation accordingly:

πvaf = { valpref(X, Z) :- valpref(X, Y), valpref(Y, Z);

pref(X, Y) :- valpref(U, V), val(X, U), val(Y, V);

defeat(X, Y) :- attack(X, Y), not pref(Y, X)}.

We obtain the following theorem using the new concepts for F̂ and πvaf , as well as re-using
πadm and πpref from Section 3.2.

Theorem 4.2 For any VAF F and e ∈ {adm, pref }, e(F) ∼= AS(πvaf ∪ πe(F̂)).

For the other notions of extensions, we can employ our encodings from Section 3.2 in a similar
way. The concrete composition of the modules however depends on the exact definitions, and
whether they make use of the notion of a defeat in a uniform way. In [4], for instance, stable
extensions for a VAF F are defined as those conflict-free subsets S of arguments, such that each
argument not in S is attacked (rather than defeated) by S. Still, we can obtain a suitable encoding
quite easily using the following redefined module:

πstable = πcf ∪ { attacked(X) :- in(Y), attack(Y, X);

:- out(X), not attacked(X)}.

Theorem 4.3 For any VAF F , stable(F) ∼= AS(πvaf ∪ πstable(F̂)).

The coherence problem for VAFs thus can be decided as follows.

Corollary 4.4 The coherence problem for a VAF F holds iff the program

πpref (F̂) ∪ {attacked(X) :- in(Y), attack(Y, X);

v :- out(X), not attacked(X); :-not v}

has no answer set.

4.2 Bipolar Argumentation Frameworks
Bipolar argumentation frameworks [9] augment basic AFs by a second relation between arguments
which indicates supports independent from defeats.

19

Definition 4.5 A bipolar argumentation framework (BAF) is a tuple F = (A, Rd, Rs) where A ⊆
U is a set of arguments, and Rd ⊆ A×A and Rs ⊆ A×A are the defeat (resp., support) relation
of F .

An argument a defeats an argument b in F if there exists a sequence a1, . . . , an+1 of arguments
from A (for n ≥ 1), such that a1 = a, and an+1 = b, and either

• (ai, ai+1) ∈ Rs for each 1 ≤ i ≤ n − 1 and (an, an+1) ∈ Rd; or

• (a1, a2) ∈ Rd and (ai, ai+1) ∈ Rs for each 2 ≤ i ≤ n.

As before, we say that a set S ⊆ A defeats an argument b in F if some a ∈ S defeats b; an
argument a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if b defeats a in F ,
then S defeats b in F .

Again, we just need to adapt the input database F̂ and incorporate the new defeat-relation.
Other modules from Section 3.2 can then be reused. In fact, we define for a given BAF F =
(A, Rd, Rs),

F̂ = {arg(a) | a ∈ A} ∪ {attack(a, b) | (a, b) ∈ Rd} ∪ {support(a, b) | (a, b) ∈ Rs},

and for the defeat relation we first compute the transitive closure of the support(·, ·)-predicate and
then define defeat(·, ·) accordingly.

πbaf = { support(X, Z) :- support(X, Y), support(Y, Z);

defeat(X, Y) :- attack(X, Y);

defeat(X, Y) :- attack(Z, Y), support(X, Z);

defeat(X, Y) :- attack(X, Z), support(Z, Y)}.

Following [9], we can use this notion of defeat to define conflict-free sets, stable extensions,
admissible extensions and preferred extensions2 exactly along the lines of Definition 3.3, 3.4, 3.5,
and 3.6, respectively.

Theorem 4.6 For any BAF F and e ∈ {stable, adm, pref }, e(F) ∼= AS(πbaf ∪ πe(F̂)).

More specific variants of admissible extensions from [9] are obtained by replacing the notion
a conflict-free set by other concepts.

Definition 4.7 Let F = (A, Rd, Rs) be a BAF and S ⊆ A. Then S is called safe in F if for each
a ∈ A, such that S defeats a, a /∈ S and there is no sequence a1, . . . , an (n ≥ 2), such that a1 ∈ S,
an = a, and (ai, ai+1) ∈ Rs, for each 1 ≤ i ≤ n − 1. A set S is closed under Rs if, for each
(a, b) ∈ Rs, it holds that a ∈ S if and only if b ∈ S.

Note that for a BAF F , each safe set (in F) is conflict-free (in F). We also remark that a set S
of arguments is closed under Rs iff S is closed under the transitive closure of Rs.

2These extensions are called d-admissible and resp. d-preferred in [9].

20

Definition 4.8 Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-admissible extension of
F if S is safe (in F) and each a ∈ S is defended by S (in F). A set S ⊆ A is called a c-admissible
extension of F if S is closed under Rs, conflict-free (in F), and each a ∈ S is defended by S (in
F). We denote the collection of all s-admissible extensions (resp. of all c-admissible extensions) of
F by sadm(F) (resp. by cadm(F)).

We define now further programs as follows

πsadm = πadm ∪ { supported(X) :- in(Y), support(Y, X);

:- supported(X), defeated(X) }

πcadm = πadm ∪ { :- support(X, Y), in(X), out(Y);

:- support(X, Y), out(X), in(Y) }.

Finally, one defines s-preferred (resp. c-preferred) extensions as maximal (wrt set-inclusion)
s-admissible (resp. c-admissible) extensions.

Definition 4.9 Let F = (A, Rd, Rs) be a BAF. A set S ⊆ A is called an s-preferred extension of F
if S ∈ sadm(F) and for each T ∈ sadm(F), S)⊆ T . Likewise, a set S ⊆ A is called a c-preferred
extension of F if S ∈ cadm(F) and for each T ∈ cadm(F), S)⊆ T . By spref (F) (resp. cpref (F))
we denote the collection of all s-preferred extensions (resp. of all c-preferred extensions) of F .

Again, we can reuse parts of the πpref -program from Section 3.2. The only additions necessary
are to spoil in case the additional requirements are violated. We define

πspref = πsadm ∪ πhelpers ∪ πspoil ∪

{ supported(X) :- inN(Y), support(Y, X);

spoil :- supported(X), defeated(X) }

πcpref = πcadm ∪ πhelpers ∪ πspoil ∪

{ spoil :- support(X, Y), inN(X), outN(Y);

spoil :- support(X, Y), outN(X), inN(Y) }.

Theorem 4.10 For any BAF F and e ∈ {sadm, cadm, spref , cpref }, we have e(F) ∼= AS(πbaf ∪
πe(F̂)).

Slightly different semantics for BAFs occur in [2], where the notion of defense is based on Rd,
while the notion of conflict remains evaluated with respect to the more general concept of defeat
as given in Definition 4.5. However, also such variants can be encoded within our system by a
suitable composition of the concepts introduced so far.

Again, we note that we can put together encodings for complete and grounded extensions for
BAFs, which have not been studied in the literature.

21

5 Discussion
In this work we provided logic-program encodings for computing different types of extensions in
Dung’s argumentation framework as well as in some recent extensions of it. To the best of our
knowledge, so far no system is available which supports such a broad range of different semantics,
although nowadays a number of implementations exists3. The encoding (together with some ex-
amples) is available on the web and can be run with the answer-set solver DLV [22]. We note that
DLV also supplies the built-in predicate < which we used in some of our encodings. Moreover,
DLV provides further language-extensions which might lead to alternative encodings; for instance
weak constraints could be employed to select the grounded extension from the admissible, or pri-
oritization techniques could be used to compute the preferred extensions.

The work which is closest related to ours is by Nieves et al. [25] who also suggest to use
answer-set programming for computing extensions of argumentation frameworks. The most im-
portant difference is that in their work the program has to be re-computed for each new instance,
while our system relies on a single fixed program which just requires the actual instance as an
input database. We believe that our approach thus is more reliable and easier extendible to further
formalisms.

Future work includes a comparison of the efficiency of different implementations and an ex-
tension of our system by incorporating further recent notions of semantics, for instance, the ideal
semantics [14].

References
[1] Leila Amgoud and Claudette Cayrol. A reasoning model based on the production of accept-

able arguments. Ann. Math. Artif. Intell., 34(1-3):197–215, 2002.

[2] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie, and Pierre Livet. On bipolarity
in argumentation frameworks. International Journal of Intelligent Systems, 23:1–32, 2008.

[3] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumentation
frameworks where semantics agree. In Proceedings of the 2nd Conference on Computational
Models of Argument (COMMA’08), pages 37–48. IOS Press, 2008.

[4] Trevor J. M. Bench-Capon. Value-based argumentation frameworks. In Proceedings of the
9th International Workshop on Non-Monotonic Reasoning (NMR’02), pages 443–454, 2002.

[5] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumenta-
tion frameworks. J. Log. Comput., 13(3):429–448, 2003.

[6] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artif.
Intell., 171(10-15):619–641, 2007.

3See http://www.csc.liv.ac.uk/∼azwyner/software.html for an overview.

22

[7] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of arguments. In
Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR’02),
pages 59–64, 2004.

[8] Martin Caminada. Semi-stable semantics. In Proceedings of the 1st Conference on Compu-
tational Models of Argument (COMMA’06), pages 121–130. IOS Press, 2006.

[9] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments
in bipolar argumentation frameworks. In Proceedings of the 8th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’05), vol-
ume 3571 of LNCS, pages 378–389. Springer, 2005.

[10] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. In Proceedings of the 8th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU’05), volume 3571 of LNCS, pages
317–328. Springer, 2005.

[11] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-
pressive power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[12] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.

[13] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[14] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation. Artif. Intell., 171(10-15):642–674, 2007.

[15] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artif.
Intell., 141(1/2):187–203, 2002.

[16] Paul E. Dunne and Martin Caminada. Computational complexity of semi-stable semantics
in abstract argumentation frameworks. In Proceedings of the 11th European Conference
on Logics in Artificial Intelligence (JELIA 2008), volume 5293 of LNCS, pages 153–165.
Springer, 2008.

[17] Uwe Egly and Stefan Woltran. Reasoning in argumentation frameworks using quantified
boolean formulas. In Proceedings of the 1st Conference on Computational Models of Argu-
ment (COMMA’06), pages 133–144. IOS Press, 2006.

[18] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364–418, 1997.

[19] Thomas Eiter and Axel Polleres. Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Practice of
Logic Programming, 6(1-2):23–60, 2006.

23

[20] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyński. The first
answer set programming system competition. In Proceedings of the 9th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483 of
LNCS, pages 3–17. Springer, 2007.

[21] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386, 1991.

[22] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM
Trans. Comput. Log., 7(3):499–562, 2006.

[23] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings of the 11th
International Conference on Logic Programming (ICLP’94), pages 23–37. MIT Press, 1994.

[24] Ilkka Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell., 25(3–4):241–273, 1999.

[25] Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Preferred extensions as stable mod-
els. Theory and Practice of Logic Programming, 8(4):527–543, July 2008.

24

