TECHNISCHE S .
UNIVERSITAT %?’ Egn?gtfiglr%r:,al
DRESDEN d gic - P

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Proof Theory (SLDNF Resolution)

Lecture 7, 28th Nov 2022 // Foundations of Logic Programming, WS 2022/23

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2022)

Previously...

* Prolog employs SLD resolution with the leftmost selection rule, traverses
the search space using depth-first search (including backtracking), and
regards a program as a sequence of clauses.

+ Prolog also offers list processing and arithmetics.

* The cut prunes certain branches of Prolog trees, and can lead to more
efficient programs, but also to programming errors.

not(X) :- X, !, fail.

not(_).

% atom fail always fails

% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as \+ X

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 2 of 30 E:gi‘g:%&z:
DRESDEN Foundations of Logic Programming, WS 2022/23 [

Overview

Motivation: Why Negation?
Normal Logic Programs and Queries
SLDNF Resolution

Allowed Programs and Queries

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 3 of 30 E:ng-'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Motivation: Why Negation?

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) (?zi?Compuk:ﬁonal

UNIVERSITAT Computational // Hannes St Slide 4 0f 30 npu
DRESDEN Foundation 3 =9 Logic -~ Group

Motivation: Example (1)

attends(andreas, fkr).
attends(maja, fkr).
attends(dirk, fkr).
attends(natalia, fkr).
attends(andreas, flp).
attends(maja, flp).
attends(stefan, flp).
attends(arturo, flp).

Who attends FLP but not FKR?

?7- attends(X,flp), \+ attends(X,fkr).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 5o0f30
DRESDEN Foundations of Logic Programming, WS 2022/23

)

‘Computational
Logic ~ Group

Motivation: Example (2)

Alistis a set < there are no duplicates in it.

is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 6 of 30 E:";ggkél::fl
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Motivation: Example (2)

Alistis a set < there are no duplicates in it.

is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).

The sets (lists)A =[a1,...,am] and B = [by, ..., by] are disjoint
—

* m=0,or
* m>0,0q ¢ B,and [ay,...,an] and B are disjoint

disjoint([], _).
disjoint([X|Y], Z) :- \+ member(X, Z), disjoint(Y,Z).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 6 of 30
DRESDEN Foundations of Logic Programming, WS 2022/23

)

‘Computational
Logic ~ Group

Normal Logic Programs and Queries

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) (?zi?Compuk:ﬁonal

UNIVERSITAT Computational // Ha St Slide 7 of 30 ic o
DRESDEN Foundation 3 =9 Logic = Group

Normal Logic Programs and Queries

Definition

+ “~"(weak) negation sign

+ A ~A(weak) literals <= Aatom

+ A ~Aground literals < Aground atom

+ normal query := finite sequence of (weak) literals
+ H< Bnormal clause ;< H atom, B normal query

* normal program := finite set of normal clauses

+ Everything as before, but now we are allowed to use (weak) negation in
clause bodies (and queries).

+ Negation “~"in ~A is “weak” because it does not state that A is false; it
only states that A cannot be shown to be true from certain premises.

* In contrast, -A states that A is false. More on this later in the course.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) .
UNIVERSITAT Coﬁﬂputat\omﬂ Logic G/roup // Hannes Strass Slide 8 of 30 Eiqugr?glf'%‘:;al

DRESDEN Foundations of Logic Programming, WS 2022/23 [gic = P

SLDNF Resolution

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) '?z-|°Computc|ﬁonal

UNIVERSITAT Computational // Ha St Slide 9 of 30 \ .
DRESDEN Foundation 3 & Logic » Group

How Do We Compute?

Definition

The Negation as Failure (nf) rule is defined as follows:

1. Suppose ~A is selected in the query Q = L, ~A, N.

2. If PU {A} succeeds, then the derivation of P U {Q} fails at this point.
3. If all derivations of P U {A} fail, then Q resolves to Q' = L, N.

Thus:

~A succeeds iff A finitely fails.
~A finitely fails iff A succeeds.

Note

SLDNF = Selection rule driven Linear resolution for Definite clauses
augmented by the Negation as Failure rule

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 10 of 30 & Egr?gl:_kg:;al
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

SLDNF Resolvents

Definition
Let Q = L, K, N be a query and K its selected literal.

1. K =Ais an atom:

- H« Mis avariant of a clause c that is variable-disjoint with Q
6 is an mgu of Aand H

Q' = (L, M, N)8 is the SLDNF resolvent of Q (and c w.r.t. A with 6)
We write this SLDNF derivation step as Q —f» Q.

2. K = ~Ais a negative ground literal:
- Q =L N SLDNF resolvent of Q (w.r.t. ~A with ¢)
- We write this SLDNF derivation step as Q —» Q'.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 11 of 30 1 Eg’?fﬂ"g':;"f'
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Pseudo Derivations

Definition
A maximal sequence of SLDNF derivation steps

61 1
Qo—> Q1 Qn—>CQn+1 -+

is a pseudo derivation of PU {Qp} <
* Qo,...,Qn+1, ... are queries, each empty or with one literal selected in it;
s 04,...,0h+1, ... are substitutions;

* C1,...,Cp+1, ... are clauses of program P
(in case a positive literal is selected in the preceding query);

+ for every SLDNF derivation step with input clause the condition
standardization apart holds.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 12 of 30 1 Eg’?fﬂ"g':;"f'
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Forests

Definition

Atriple 5 = (7, T,subs) is a forest «—
« T set of trees where

- nodes are queries;
- aliteral is selected in each non-empty query;
- leaves may be marked as “success”, “failure”, or “floundered”.

e T & TJisthe main tree

* subs assigns to some nodes of trees in T with selected negative ground
literal ~A a subsidiary tree of T with root A.

Definition

Let T € 7 be a tree.

« Tis successful < it contains a leaf marked as “success”.

+ Tis finitely failed < itis finite and all leaves are marked as “failure”.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 13 of 30 1 Eg’?fﬂ"g':;"f'
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Pre-SLDNF Trees and their Extensions

Definition

The class of pre-SLDNF trees for a program P is the smallest class € of

forests such that

+ for every query Q: the initial pre-SLDNF tree ({Ty}, Tg, Subs) is in C,
where T, contains the single node Q and subs(Q) is undefined;

+ for every F € C: the extension of Fis in C.

Definition
The extension of 7 = (T, T, subs) is the forest that is obtained as follows:
1. Every occurrence of the empty query is marked as “success.”

2. For every non-empty query Q that is an unmarked leaf in some tree in 7,
perform the action extend(d, Q, L), where L is the selected literal of Q.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass
DRESDEN Foundations of Logic Programming, WS 2022/23

, .
@ Computational

Slide 14 of 30 & Logic = Group

Action extend(F, Q, L)

Recall that L is the selected literal of Q.
Definition

+ Lis positive. Then extend(F, Q, L) is obtained as follows:
Q has no SLDNF resolvents = Q is marked as “failure”
else = for every program clause ¢ which is applicable to L, exactly one direct

descendant of Q is added. This descendant is an SLDNF resolvent of Q and ¢
w.r.t. L.

+ L= ~Ais negative. Then extend(F, Q, L) is obtained as follows:
A non-ground = Q is marked as “floundered”
A ground: case distinction on Q:
- subs(Q) undefined

= new tree 7" with single node A is added to T and subs(Q) is set to T’
- subs(Q) defined and successful = Q is marked as “failure”
- subs(Q) defined and finitely failed

= SLDNF resolvent of Q is added as the only direct descendant of Q
- subs(Q) defined and neither successful nor finitely failed = no action

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 15 of 30 ﬁ_.‘ﬂ Egr?gl:_kg:;al
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

SLDNF Trees (Successful, Failed, Finite)
Definition

An SLDNF tree is the limit of a sequence Fy, F1, %> ..., where

* Jpis aninitial pre-SLDNF tree;

* Jiq is the extension of F;, for every i € N.

The SLDNF tree for P U {Q} is the SLDNF tree in which Q is the root of the
main tree.

Definition

* A(pre-)SLDNF tree is successful :<= its main tree is successful.

* A(pre-)SLDNF tree finitely failed < its main tree is finitely failed.
* An SLDNF tree is finite :<= no infinite paths exist in it, where a path is
a sequence of nodes Ny, N1, N, ... such that for everyi=0,1,2,...:

- either Nj;4 is a direct descendant of N,
- or Njq is the root of subs(N;).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 16 of 30 g E(?"I‘(?UOG:)TJG
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Example (1)

Consider the following logic program P: < p
The SLDNF tree for PU {~p} is infinite:
~p
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Compuic|ﬁonal
(L) it cepoaliode o e S Compuictona

Example (1)

Consider the following logic program P: p < P

The SLDNF tree for PU {~p} is infinite:

~P

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 17 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (1)

Consider the following logic program P: p < P

The SLDNF tree for PU {~p} is infinite:

~P

s — I

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
@ UNIVERSITAT

, .
Computational Logic Group // Hannes Strass Slide 17 of 30 E:"i‘é’lfkg&za'
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic = P

Example (1)

Consider the following logic program P:

The SLDNF tree for PU {~p} is infinite:

~P

s—Ics— IS

«—

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
@ UNIVERSITAT Computational Logic Group // Hannes Strass Slide 17 of 30
DRESDEN Foundations of Logic Programming, WS 2022/23

)

‘Computational
Logic ~ Group

Example (1)

Consider the following logic program P: p < P

The SLDNF tree for PU {~p} is infinite:

~P

c— T — I — IS

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 17 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

p < ~q
Consider the following logic program P: q
q < g
The SLDNF tree for PU {~p} is successful:
~P
TECHNISCHE Negation: Pr]ojof'gh‘eé)r{éiLDNFI:ii(;\:t\ig)s(smc(ure 7) de 180 @ ,Compuk:ﬁonal
v S S s e copeutons

Example (2)

p < ~q
, . . —
Consider the following logic program P: q
q < g
The SLDNF tree for PU {~p} is successful:
~P
R
TECHNISCHE Negation: Pr]ojof'gh‘eé)r{éiLDNFI:ii(;\:t\ig)s(smc(ure 7) de 180 @ ,Compuk:ﬁonal
v S S s e copeutons

Example (2)

p < ~q
Consider the following logic program P: q

q < g
The SLDNF tree for PU {~p} is successful:

~p N
R
~q
TECHNISCHE Negation: Pr]ojof'gh‘eé)r{éiLDNFI:ii(;\:t\ig)s(smc(ure 7) de 180 @ ,Compuk:ﬁonal
v S S s e copeutons

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 Computational
DRESDEN Foundations of Logic Programming, WS 2022/23 [

Logic ~ Group

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

g
RN
0 q

success \
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

failure R
success \
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

O P
\

failure R
success \
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 E:r?flf'g&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Example (2)

Consider the following logic program P:

29T
T

The SLDNF tree for PU {~p} is successful:
~P

O P
\

success
~q
failure Tl
success \
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Compuic|ﬁonal
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 18 of 30 Pl
DRESDEN Foundations of Logic Programming, WS 2022/23 Logic ~ Group

Quiz: SLDNF Trees

Consider the following logic program P: ...

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) i r) 9
@ UNIVERSITAT Computational Logic Group // Hannes Strass Slide 19 of 30 Eggg?‘g‘;ﬁ‘:
DRESDEN Foundations of Logic Programming, WS 2022/23 [

SLDNF derivation

Definition
An SLDNF derivation of PU {Q} is
* abranch in the main tree of an SLDNF tree J for PU {Q}

+ together with the set of all trees in ¥ whose roots can be reached from
the nodes in this branch.

An SLDNF derivation is successful ;< the branch ends with .
Definition
Let the main tree of an SLDNF tree for PU {Qp} contain a branch

6,

§=Q —> Q1+ Qu1 —> Qy =D

The computed answer substitution (cas) of Qg (w.r.t. &) is (61 - - - 61) | vary)-

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 20 of 30 g Eg":‘cpu"sr“’;;“
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

A Theorem on Limits

(i) Every SLDNF tree is the limit of a unique sequence of pre-SLDNF trees.
(ii) If the SLDNF tree J is the limit of the sequence Jy, F1, ¥>, .. ., then:

(a) F is successful and yields cas 8 iff some J; is successful and yields cas 6,
(b) F finitely failed iff some J; is finitely failed.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) i r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 21 of 30 E:gi"gl:-kglri’:g
DRESDEN Foundations of Logic Programming, WS 2022/23 [

Allowed Programs and Queries

TECHNISCHE \ tion: Proof Theory (SLDNF Resolution) (Lecture 7) - o) - |
UNIVERSITAT Computational // Ha St Slide 22 of 30 G i| Computational

DRESDEN Foundation ogic Programming 3 =9 Logic - Group

Why Only Select Ground Negative Literals? (1)

positive(y)
zero(0) «
positive(x) <« ~zero(x)

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 23 of 30 E:r?glf'%l;:al
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Why Only Select Ground Negative Literals? (1)

positive(y)

zero(0) «
o { x/ }
positive(x) <« ~zero(x) Y
~zero(y)
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) # Computational
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 23 of 30 9 npu
DRESDEN Foundations of Logic Programming, WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (1)

positive(y)

zero(0) «
o { x/ }
positive(x) <« ~zero(x) Y
~zero(y)
zero(y)
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) # Computational
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 23 of 30 9 npu
DRESDEN Foundations of Logg\c Progr'pammmg, WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (1)

positive(y)
zero(0) «
positive(x) «— ~zero(x) by

~zero(y)

" zero(y)
{y/0}
O
R

Why Only Select Ground Negative Literals? (1)

positive(y)
zero(0) «
positive(x) «— ~zero(x) by
~zero(y)
~~ zero(y)
{y/0}
O
success
R

Why Only Select Ground Negative Literals? (1)

positive(y)
zero(0) «
L. X/
positive(x) <« ~zero(x) {xly}
~zero(y)
failure
zero(y)
{y/0}
O
success
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) e 230 @ °Con.lputc|ﬁonal
vl S e ot S

Why Only Select Ground Negative Literals? (1)

positive(y)

zero(0) « o

positive(x) « ~zero(x) {xly}
failure -

~ zero(y)

{y/0}

success
Hence, -3y(positive(y))? That is, Vy(-positive(y))?
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Compuic|ﬁonal
UNIVERSITAT C tational L G /1 Ha St Slide 23 of 30 g
DRESDEN Foundations of Logic programming, WS 2052/23 Logié * Group

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «
positive(x) < ~zero(x)

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 E:r?glf'%l;:al
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «

positive(x) « ~zero(x) {x/s(0)}

~zero(s(0))
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 E:r?glf'%lr%nal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «

positive(x) « ~zero(x) {x/s(0)}

~zero(s(0))
zero(s(0))
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 E:r?glf'%lr%nal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «

positive(x) « ~zero(x) {x/s(0)}

~zero(s(0))
zero(s(0))
failure
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) # Computational
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 9 npu
DRESDEN Foundations of Logic Programming, WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «

positive(x) « ~zero(x) {x/s(0)}

~zero(s(0))
<€ zero(s(0))
failure
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) # Computational
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 9 npu
DRESDEN Foundations of Logic Programming, WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «

positive(x) « ~zero(x) {x/s(0)}

~zero(s(0))
<€ zero(s(0))
failure
sSuccess
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) # Computational
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 24 of 30 9 npu
DRESDEN Foundations of Logic Programming, WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «
positive(x) < ~zero(x) {x/s(0)}
~zero(s(0))
< - zero(s(0))
failure
O
success
Hence, positive(s(0)). That is, Jy(positive(y)).
ot

Why Only Select Ground Negative Literals? (3)

positive(y)

zero(0) « /)

~zero(y)

positive(x) < ~zero(x)

S
failure
zero(y)

{y/0}

success
Mistake in (x): Jy(zero(y)) # —3y(-zero(y))
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Computc|ﬁonal
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 25 of 30 P
DRESDEN Foun%lét\olns of Lo%\c Progr'pamm\r'wé WS 2022/23 Logic ~ Group

Why Only Select Ground Negative Literals? (3)

Jy(positive(y))

zero(0) « /)

dy(~zero(y))

positive(x) < ~zero(x)

™

failure R
dy(zero(y))

{y/0}

success
Mistake in (x): Jy(zero(y)) # —3y(-zero(y))
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Computc|ﬁonal
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 25 of 30 P
DRESDEN Foun%lét\olns of Lo%\c Progr'pamm\r'wé WS 2022/23 Logic ~ Group

Non-Ground Negative Literals in Prolog

zero(9).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 26 of 30 E:r?flf'%l&zal
DRESDEN Foundations of Logic Programming, WS 2022/23 [gic =~ P

SLDNF Selection Rules & Blocked Queries
Definition

* An SLDNF selection rule is a function that, given a pre-SLDNF
tree § = (7, T, subs), selects a literal in every non-empty unmarked leaf in
every tree in 7.

* An SLDNF tree F is via a selection rule R <= & is the limit of a
sequence of pre-SLDNF trees in which literals are selected according to R.

+ Aselectionrule R is safe <= R never selects a non-ground negative
literal.

Definition

* Aquery Qis blocked :<= Q is non-empty and contains exclusively
non-ground negative literals.

+ PU{Q} flounders <= some SLDNF tree for PU {Q} contains a blocked

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)] .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 27 of 30 m Compuiational
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Allowed Programs and Queries

Definition

* Aquery Qis allowed < every variable in Q occurs in a positive literal
of Q.

+ Aclause H « Bis allowed :< the query ~H, B is allowed.
(Thus: Aunit clause H « is allowed <= His a ground atom.)

+ Aprogram Pis allowed < all its clauses are allowed.

Allowed clauses are also called safe (whenever no confusion with selection
rules can arise).

Theorem 3.13 [Apt and Bol, 1994]

Suppose that P and Q are allowed. Then

(i) PU {Q} does not flounder;
(i) if B is a cas of Q, then QB is ground.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 28 of 30 g Eg":‘cpu"sr‘:l‘f
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

Allowed Programs: Example

zero(0) «
positive(x) « ~zero(x)

This program is not allowed.

zero(0) «

positive(x) < num(x), ~zero(x)
num(0) «

num(s(x)) < num(x)

This program is allowed.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 29 of 30 E:;?fg_kg::g
DRESDEN Foundations of Logic Programming, WS 2022/23 [

Conclusion

Summary

* Normal logic programs allow for negation in queries (clause bodies).

+ A proof theory for normal logic programs is given by SLDNF resolution.

+ Negated atoms ~A are treated by asking the query A in a subsidiary tree.
+ Care must be taken not to let non-ground negative literals get selected.

Suggested action points:

+ Construct the (leftmost selection rule) SLDNF tree for positive(y) with the
allowed version of the program.

+ Find examples for programs and queries with blocked nodes in some

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 30 of 30 L H Eg’?fﬂ"g':;"f'
DRESDEN Foundations of Logic Programming, WS 2022/23 [9 P

	Motivation: Why Negation?
	Normal Logic Programs and Queries
	SLDNF Resolution
	Allowed Programs and Queries

