Two-Variable Logic FO

Two-variable logic FO?: historical remarks

@ Two-variable logic, FO?, is the fragment of first-order logic in which only
variables x, y are allowed; there are no function symbols; equality symbol can
be used.

o Satisfiability problem for FO undecidable (Gddel, Church, Turing, 1930s).

@ FO3 (even without equality) undecidable (Kahr, Moore, Wang, 1962)

o undecidability of the class V3V
@ Scott's reduction (1962) of FO? to the Godel's class 3*Vv3*
o At those times it was believed that Godel’s class is decidable with equality
(Godel only gave a formal proof for the case without equality)
o Goldfarb's proof (1984) of undecidability of the Gédel's class with equality
o Scott’s argument for decidability of FO® works only in the absence of equality
e First decidability proof working for full FO? (Mortimer, 1975)

o Doubly exponential model property: every satisfiable FO® formula has a model
of at most doubly exponential size with respect to its length
e Exponential model property, SAT(FO?) is NExpTime-complete (Gridel,
Kolaitis, Vardi, 1997)
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Two-Variable Logic FO

FO?: what we can express

Examples of formulas from FO?:
o Each pair of elements is connected by R: VxyRxy

Each pair of elements one of which is in @ and the other in P is not
connected by R: Vxy(Qx A Py — —Rxy)

R is antireflexive: Vx—Rxx

R is symmetric: Vxy(Rxy — Ryx)
There is at most one element in P: Vxy(Px A Py — x =)

Each element in P has an R-path of length three to an element in Q:
Vx(Px — Jy(Rxy A 3x(Ryx A Jy(Rxy A Qy))))

An example of a property which is not expressible in FO?: R is transitive
@ In a moment we will see that every satisfiable FO? formula has a finite model
@ Assume to the contrary that ™" expresses transitivity of R

@ Then ™™ A Vx3JyRxy A -dxRxx is satisfiable, but only in infinite models;
contradiction.
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Two-Variable Logic FO
Atomic types

Definition 1

An (atomic) 1-type of an element a, in a structure 2, is the set o literals with
a variable x which are satisfied by a. For a pair of distinct elements a, b, their
2-type is the set of literals with two free-variables x, y, which are satisfied by
a, b.

| \

Example 2
If 2 is a structure over the signature consisting of unary symbols P, Q and a
binary symbol R, then an example of a 1-type is {Px, 7@Qx, —Rxx}, and an
example of a 2-type is: {Px, ~Qx, 7 Rxx,—Py,-Qy, Ryy, Rxy, 7 Ryx}.

o We will consider signatures containing only unary and binary relations
symbols. Note, that under this assumption, to fully describe a structure it is
enough to define its domain, 1-types of all elements, and 2-types of all pairs
of elements.
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Two-Variable Logic FO
Exponential model property

Lemma 3 (Gradel, Kolaits, Vardi)

Every satisfiable FO? formula ¢ has a model of size at most exponential with
respect to |p|.

We will see a proof of a slightly stronger result:

Let o be an FO? formula. Let 2 |= . Then there exists a model A |= ¢, of size
exponential with respect to ||, such that

o the domain of A is a subset of the domain of 2,

@ each element from 21’ has the same 1-type in both structures.
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Two-Variable Logic FO
Normal form for FO?

For every FO? formula ¢ there exists an FO? formula o' over a signature
containing no symbols of arity greater than 2, such that ¢ and ' are satisfiable
over the same domains.

Lemma 6

For every FO? formula ¢ we can compute a formula ¢’ such that:
(i) |¢'| is linear in |p|; and the signature of ¢’ is an extension of the signature of
© by some unary symbols
(ii) o is satisfiable iff ¢' is satisfiable; moreover: every model of ¢ can be
expanded to a model of ¢’ and the restriction of every model of ¢’ to the
original signature is a model of .
(iii) ' is of the form:

Vxypo(x,y) A\ VxIyei(x, y),
i=1

where p; are quantifier free.
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Two-Variable Logic FO
Small model construction - plan

o We take an arbitrary (possibly infinite) model 2( = ¢

@ We distinguish in the domain of 2 three subsets: C, D, E of exponentially
bounded size

@ The domainof 2’'is CUDUE

@ 2l is obtained from 2L by retaining connections between C and D and
between D and E and by slightly modifying connections between E and C.
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Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxTypi(x, y)-

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|cx|, where ¢ is the set
of 1-types.

@ A witness for an element a and a formula Vx3yp;(x, y) is an element b such
that 2 = ¢;[a, b]
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Two-Variable Logic FO
From 2 to 2’

e Recall: ¢ =Vxypo(x,y) A Ay VxTypi(x, y)-

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|cx|, where ¢ is the set
of 1-types.

@ A witness for an element a and a formula Vx3yp;(x, y) is an element b such

that 2 = ¢;[a, b]
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Two-Variable Logic FO
From 2 to 2’
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o Recall: ¢ = Vxypo(x,y) A ALy YxTypi(x, y).

o C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|cx|, where ¢ is the set
of 1-types.

o D provides witnesses for C; |D| < |C|m < m?|c|
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Two-Variable Logic FO
From 2 to 2’
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o Recall: ¢ = Vxypo(x,y) A ALy YxTypi(x, y).

o C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|cx|, where ¢ is the set
of 1-types.

@ D provides witnesses for C;

D| < |Clm < m?|x|
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Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxIypi(x,y).

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|x|, where ¢ is the set
of 1-types.

@ D provides witnesses for C; |D| < |C|m < m?|c|
e E provides witnesses for D; |E| < |D|m < m®||

Emanuel Kieronski (Wroctaw) Two-Variable Logics December 10, 2011 12 / 26



Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxIypi(x,y).

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|x|, where ¢ is the set
of 1-types.

@ D provides witnesses for C; |D| < |C|m < m?|c|
e E provides witnesses for D; |E| < |D|m < m®||
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Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxIypi(x,y).
@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|x|, where ¢ is the set

of 1-types.

@ D provides witnesses for C; |D| < |C|m < m?|c|
e E provides witnesses for D; |E| < |D|m < m®||
o We modify connections between E and C to provide witness for E
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Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxIypi(x,y).

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|x|, where ¢ is the set
of 1-types.

@ D provides witnesses for C; |D| < |C|m < m?|c|
e E provides witnesses for D; |E| < |D|m < m®||
o We modify connections between E and C to provide witness for E
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Two-Variable Logic FO
From 2 to 2’
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e Recall: ¢ =Vxypo(x,y) A Ay VxIypi(x,y).

@ C: elements from 2 whose 1-types have at most m realizations, and m
realizations of each of the remaining 1-types; |C| < m|x|, where ¢ is the set
of 1-types.

@ D provides witnesses for C; |D| < |C|m < m?|c|

e E provides witnesses for D; |E| < |D|m < m®||

o We modify connections between E and C to provide witness for E
e 2 is A[(C U D U E) with this minor modifications
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Two-Variable Logic FO
Complexity

The satisfiability problem for FO? is NExpTime-complete.

Proof: Upper bound: For a given ¢ we compute its normal form ¢,
nondeterministically guess an exponential model of ¢’, and verify that it is really a
model of ¢ (this can be done in time polynomial with respect to the size of model
and formula).

Lower bound: easy, the trick with counting up to 2" can be employed to enforce a
grid of size 2" x 2", m|

13 / 26
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Guarded Fragment
Guarded Fragment - Definition

Definition 10

Guarded fragment (introduced by Andréka, van Benthem, Németi), GF, is the
smallest subset of FO such that:

e all atomic formulas belong to GF;
o GF is closed under boolean operations (=, V, A, =, <);

e quantifiers are relativized by atoms: if ¢(x,y) is in GF and ~(x,y) is an
atom containing all free variables of ¢, then

Vy(v(x,y) = ¢(x,y))
and
Ay(v(x,y) A p(x,y))

are in GF. Atoms 7(x,y) are called guards. x,y denote here some tuples
of variables.
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Guarded Fragment
Guarded Fragment: Examples

o Examples of formulas in GF
e Vxy(Rxy — Ryx)
o Vx(Px — Jy(Rxy A Qy))
e Vx(x = x — Jyz(Sxyz A Rxy A Rxz)
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Guarded Fragment
Guarded Fragment: Examples

o Examples of formulas in GF

e Vxy(Rxy — Ryx)

o Vx(Px — Jy(Rxy A Qy))

e Vx(x = x — Jyz(Sxyz A Rxy A Rxz)
o Examples of formulas not in GF

o Ix(Px AVyz(Rxy — Rxz)

o Vxyz(RxyA\Ryz — Rxz)

e Vxy(PxAPy — Exy)
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Guarded Fragment
Guarded Fragment: Examples

o Examples of formulas in GF
e Vxy(Rxy — Ryx)
o Vx(Px — Jy(Rxy A Qy))
e Vx(x = x — Jyz(Sxyz A Rxy A Rxz)
o Examples of formulas not in GF
o Ix(Px AVyz(Rxy — Rxz)
o Vxyz(RxyA\Ryz — Rxz)
e Vxy(PxAPy — Exy)
@ Description logic ALC can be translated to the two-variable guarded
fragment GF?:

Woman M JhasChild.(Male MYhasChild.(Male L/ Blond))
translates to GF? formula:

Wx A Jy(Cxy A My AVx(Cyx — (Mx V Bx)))
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Guarded Fragment

Guarded Fragment: decidability and complexity (review)

o Decidability and complexity of GF (Gradel, 1997):
o GF has the finite model property
o SAT(GF) is 2ExpTime-complete
o SAT(GF?) (and in fact also SAT(GF¥) for arbitrary fixed k) is
ExpTime-complete.
@ Many interesting extensions of GF?, e.g. by fixed point operators, constants,
transitive relations in guards are decidable.
o We will see:
o SAT(GF?4EG) is NexpTime-complete
o FINSAT(GF?+EG) is NexpTime-complete
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ON THE DECISION PROBLEM FOR
TWO-VARIABLE FIRST-ORDER LOGIC

ERICH GRADEL, PHOKION G. KOLAITIS AND MOSHE Y. VARDI

Abstract. We identify the computational complexity of the satisfiability problem for FO?,
the fragment of first-order logic consisting of all relational first-order sentences with at most
two distinct variables. Although this fragment was shown to be decidable a long time ago,
the computational complexity of its decision problem has not been pinpointed so far. In 1975
Mortimer proved that FO? has the finite-model property, which means that if an FO?-sentence
is satisfiable, then it has a finite model. Moreover, Mortimer showed that every satisfiable
FOZ-sentence has a model whose size is at most doubly exponential in the size of the sentence.
In this paper, we improve Mortimer’s bound by one exponential and show that every satisfiable
FO?-sentence has a model whose size is at most exponential in the size of the sentence. As a
consequence, we establish that the satisfiability problem for FO? is NEXPTIME-complete.

§1. Introduction. Once the satisfiability problem for first-order logic was
shown to be undecidable [12, 55], logicians embarked on an ambitious project
aiming to delineate the boundary between decidable and undecidable frag-
ments of first-order logic. In this project, the main focus was on prefix
classes and prefix-vocabulary classes, that is, on collections of first-order
sentences in prenex normal form defined by imposing restrictions on the
quantifier prefix or by imposing restrictions on both the quantifier prefix
and the vocabulary of function and relation symbols. For example, the
AEA class consists of all relational (i.e., without function symbols) first-
order sentences with quantifier prefix of the form V3V. After toiling on this
project for almost fifty years, researchers were finally able to identify the di-
viding line between decidability and undecidability for all prefix-vocabulary
classes of first-order formulas [15, 41, 23, 6]. Moreover, an effort was made
to pinpoint the computational complexity of the decision problem for the
decidable classes [6, 18, 24, 25, 37, 42].

A different way to obtain syntactic fragments of first-order logic is to
partition the formulas according to the number of their variables. More
precisely, k-variable first-order logic FO* consists of all relational first-order
formulas containing at most k different individual variables, k > 1. These
fragments were introduced by Henkin [30], who investigated certain aspects

Received September 12, 1996; accepted October 7, 1996; revised January 23, 1997.
During the preparation of this paper Kolaitis and Vardi were supported by NSF grants.

© 1997, Association for Symbolic Logic
1079-8986/97/0301-0003/$2.70

53

This content downloaded from
77.254.247.232 on Tue, 22 Jun 2021 12:42:52 UTC
All use subject to https://about.jstor.org/terms



54 ERICH GRADEL, PHOKION G. KOLAITIS AND MOSHE Y. VARDI

of their proof theory. In recent years, both k-variable first-order logics and
k-variable infinitary logics gained popularity in the context of finite-model
theory, where they have been the focus of extensive study, since the number
of variables is considered a logical resource in descriptive complexity theory
and since logics with fixpoint constructs can be viewed as effective fragments
of k-variable infinitary logics (see [9, 14, 31, 33, 34, 35, 38, 39, 46, 56]).
Note that the class AEA mentioned above is contained in FO’. Since the
satisfiability problem for the AEA class is undecidable (see [6,41]), it follows
that FO’, even without equality, is undecidable. This motivates the study of
the decision problem for FO?, as FO? and FO® may very well be on opposite
sides of the boundary between the decidable and the undecidable.

Modal logic provides another motivation for studying the complexity of
the decision problem for FO?. Modal logic can be described succinctly as the
logic of necessity and possibility, of “must be” and “may be”. Note that one
should not take “necessity” and “possibility” literally, as their meaning may
be adapted to the situation at hand. For example, “necessarily” can mean
“according to the laws of physics”, or “according to my beliefs”, or even “af-
ter the program terminates”. For this reason, in recent years modal logic has
been applied to numerous areas of computer science, including artificial in-
telligence [7, 44], program verification [48, 47], hardware verification [5, 51],
database theory [10, 13, 43], and distributed computing [8, 28]. The attrac-
tiveness of modal logic for formal reasoning stems to a large degree from the
fact that propositional modal logic is decidable in a very robust way, as has
been amply demonstrated (see [11, 17, 29, 40, 49, 54, 58]). The robust decid-
ability of propositional modal logic is actually rather surprising. In spite of
the adjective “propositional”, it is well understood that propositional modal
logic is essentially a fragment of first-order logic, where the modalities O
(“necessarily”) and < (“possibly”) are intrinsically universal and existential
quantifiers, respectively [1, 2]. What, then, makes propositional modal logic
so robustly decidable? To answer this question, we have to take a close look
at propositional modal logic as a first-order logic. A careful examination
reveals that propositional modal logic can in fact be viewed as a fragment
of FO? without equality (see [20, 3]). Thus, a decidability result for FO’
would explain the decidability of propositional modal logic. Moreover, a
result identifying the precise complexity of FO* would also provide an upper
bound for the computational complexity of propositional modal logic and
several of its variants (see [57]).

It should be noted that the presence or absence of equality may cause
the boundary between decidability and undecidability to shift. The most
striking instance of this phenomenon is the Godel class, that is, the class of
relational first-order sentences with quantifier prefix of the form 3*vv3* (a
string consisting of an arbitrary number of existential quantifiers, followed
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ON THE DECISION PROBLEM FOR TWO-VARIABLE FIRST-ORDER LOGIC 55

by precisely two universal quantifiers, followed by an arbitrary number of
existential quantifiers). Godel [21], Kalmar [36], and Schiitte [52] showed
independently that this class is decidable, provided no occurrence of the
equality symbol is allowed in the sentences of the class. In a second paper
[22], Godel also established that this class has the finite model property:
every satisfiable sentence in this class has a finite model (this property is
often referred to as finite controllability). At the end of this paper Godel
claimed, without substantiation, that his proof persists in the presence of
equality. This claim, however, was refuted by Goldfarb [23], who established
that even the minimal Godel class, with quantifier prefix of the form Vv3,
becomes undecidable once equality is allowed.

The presence or absence of equality may also affect the computational
complexity of the satisfiability problem for decidable classes. A case in
point is the Ackermann class, which consists of all relational first-order
sentences with quantifier prefix of the form 3*vV3*. Indeed, the satisfiability
problem for the Ackermann class without equality is EXPTIME-complete
[41, 18], whereas the same problem for the Ackermann class with equality
is NEXPTIME-complete [37]. A more dramatic example is provided by
the Rabin class, which consists of all first-order sentences with arbitrary
quantifier prefix, one unary function symbol, and an arbitrary number of
unary relation symbols (but no function or relation symbols of higher arity).
The satisfiability problem for this class without equality is NEXPTIME-
complete. On the other hand, the same class with equality is decidable, but
not elementary recursive, that is, the time complexity of the decision problem
exceeds any constant number of iterations of the exponential function (see
[61).

For certain other classes, however, the presence of equality makes no es-
sential difference. Consider, for example, the Bernays-Schonfinkel-Ramsey
class, which consists of all relational first-order sentences with quantifier
prefix of the form 3*v*. The satisfiability problem for this class without
equality was shown to be decidable by Bernays and Schonfinkel [4]; more-
over, Ramsey [50] extended this result! to the case with equality. Lewis
[42] showed that the satisfiability problem for this class without equality is
NEXPTIME-complete; it is easy to see that the same holds true for the case
with equality.

The first decidability result for FO* was obtained by Scott [53], who showed
that the decision problem for FO? can be reduced to that of the Godel class.
Since, as mentioned above, only the Godel class without equality is decidable,
Scott’s reduction yields the decidability of FO® without equality, but does

'In fact, Ramsey proved a much stronger result, namely, that the spectrum of every such
sentence is either finite or cofinite. It was for the proof of this result that Ramsey developed
his celebrated combinatorial theorems.
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56 ERICH GRADEL, PHOKION G. KOLAITIS AND MOSHE Y. VARDI

not cover the case of FO* with equality. The full class FO* was considered
by Mortimer [45]. He proved that this class is decidable by showing that
it has the finite model property. An analysis of his proof shows that he
actually established a bounded model property for FO*: if a FO*-sentence
 is satisfiable, then it is satisfiable in a model whose size is at most doubly
exponential in the length of ¢. It follows that satisfiability of FO? with
equality is decidable in nondeterministic doubly exponential time, since to
check whether a FO”-sentence ¢ with equality is satisfiable we simply guess
a finite structure A of size at most doubly exponential in the length of ¢ and
verify that A |= ¢.

In this paper we take a closer look at the decision problem for FO?, with the
aim of pinpointing its computational complexity and, thus, contributing a
missing part to the complexity-theoretic analysis of the decidable fragments
of first-order logic. The main result of this paper is that the satisfiability prob-
lem for FO? with equality is NEXPTIME-complete. In particular, this new
upper bound for the satisfiability problem for FO* with equality improves
Mortimer’s upper bound by one exponential. To obtain this improvement,
we revisit Scott’s reduction and observe that in fact it reduces FO? to a proper
fragment of the Godel class. This fragment, which we call the Scott class,
consists of all first-order sentences with equality that are conjunctions of
sentences with quantifier prefixes of the form ¥V and V3. We show that
by refraining from converting these sentences to prenex normal form (and
viewing them as sentences in the Godel class) we can realize a significant
decrease in complexity. Specifically, we establish an exponential model prop-
erty for the Scott class: if a sentence ¢ in this class is satisfiable, then it is
satisfiable in a model whose size is at most exponential in the size of ¢.

The lower bound for the complexity of the satisfiability problem for FO*
follows from results of Fiirer [19], who, building on earlier work by Lewis
[42], established that the satisfiability problem of YV AV3 first-order sentences
without equality (that is, sentences that are a conjunction of a single ¥V
sentence without equality and a single V3 sentence without equality) is
NEXPTIME-hard. Thus, equality makes no difference to the complexity of
the satisfiability problem for FO”.

§2. First-order logic with a fixed number of variables. We consider first-
order logic FO with equality over a fixed relational vocabulary. The k-
variable first-order logic FO* consists of all formulas of FO with at most k
distinct individual variables. Thus,

FO = g, FO*.

The expressive power of the logics FO*, k > 1, on graphs G = (V,E) is
usually illustrated by the fact that for any » > 1 the property “there is a path
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ON THE DECISION PROBLEM FOR TWO-VARIABLE FIRST-ORDER LOGIC 57

of length n from x to y” is expressible by a formula p,(x, y) of FO’. Indeed,
put pi(x,y) = E(x,y) and assume, by induction on #, that p,_;(x, y) is
a formula of FO’ asserting that “there is a path of length » from x to y”.
Then the desired formula p,(x, y) is

(F)E(x,2) A (Bx)(x =z A pai(x,9))]-

Note that any formula in prenex normal form that is equivalent to p,(x, y)
requires at least n + 1 variables, while p,(x, y) uses only the variables x,
y, and z (the variables x and z have many occurrences in p,(x, y)). Next,
consider the property “there are at least n distinct elements”, which, in
general, can not be expressed by any first-order sentence with fewer than »
variables. If, however, we restrict ourselves to linear orders P = (P, <), then
for every n > 1 there is a sentence y, of FO” asserting “there are at least n
distinct elements”. For example, y, is the sentence

(@x)(Fy)x <y A @x)(y <x A @) (x < y))I.

§3. FO? and Scott’s reduction. The satisfiability problem for FO® was first
studied by Scott [53], who showed that it can be reduced to the satisfiability
problem for the Gédel class, that is, the class of sentences with quantifier
prefix of the form Vv3*.

Suppose that ¢ is a sentence in FO* with individual variables x and y.
Let s be the size of ¢, that is, the length of a string encoding ¢ over some
fixed alphabet. Before describing Scott’s reduction, we want to remove all
relation symbols of arity bigger than 2. More precisely, given ¢ as above,
we will construct in polynomial time an FO?-sentence ¢’ with the following
properties:

(1) ¢ is satisfiable if and only if ¢’ is satisfiable. Furthermore, for every
finite model of ¢’ there is a finite model of ¢ of the same cardinality.

(2) Every relation symbol occurring in ¢’ has arity at most 2.

(3) ¢’ contains O(s/ log s) different relation symbols and is of size O(s).

Consider an atomic subformula R(v,,...,v,) of ¢, where R is an n-ary
relation symbol occurring in ¢ and » > 2. Note that each variable v; is
either x or y. For each such subformula of ¢, we introduce a new relation

symbol R If both x and y are among the variables vy, ... ,v,, then
RWi-) has arity 2; in this case, we replace every occurrence of the atomic
formula R(vy,...,v,) in ¢ by the atomic formula R" ") (x,y). If each

variable v; is the variable x (respectively, the variable y), then R has
arity 1; in this case, we replace every occurrence of the atomic formula
R(v,,...,v,) in ¢ by the atomic formula R (x) (respectively, by the
atomic formula R"*)(y)). Let ¢' be the sentence resulting from these
substitutions. Since (when coded by a fixed alphabet) a formula of length
s can contain only O(s/logs) distinct atomic formulas, it follows that ¢!
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has O(s/log s) different relation symbols and is of size O(s). To complete
the construction of ¢’, we must append certain conjuncts to ¢ asserting
that certain atomic formulas involving the new relation symbols R~ are
equivalent to each other. For example, if the atomic formulas R(x, y, x) and
R(y, x, y) occur in ¢, then we must append a conjunct asserting that

(V) (V) (R™) (x, p) & RP¥(p, x)).

Similarly, if the atomic formulas R(x, x, x) and R(x, y, x) occur in ¢, then
we must add a conjunct asserting that

(Vx)(R®*Y(x) & R™"(x, x)).

For each atomic subformula R(v, ... ,v,) of ¢ such that both variables x
and y are among the variables v;, we consider the atomic formula R(w,, ... ,
w,) obtained from R(vy,... ,v,) by replacing every occurrence of x by y,
and every occurrence of y by x. If R(w, ... ,w,) happens to be a subformula
of ¢ as well, then we append the FO’-sentence

(Vx) (V) (RY ) (x, ) & RO (p, x)).

Finally, for every relation symbol R occurring in ¢, we first consider all
atomic subformulas R(v,, ... ,v,) of ¢ in which R occurs and then append
an FO'-sentence asserting that all atomic formulas of the form R ") (x, x)
(or of the form R™*)(x)) are equivalent to each other. This sentence is
written as a cycle of implications to avoid a quadratic blow-up. For example,
if R(x,x,x), R(x,y,x), R(x,x,y) is a list of all atomic formulas of ¢ in
which R occurs, then we append the FO'-sentence

(V) (R (x) = R (x,)) A
(R (x, x) — R (x,x)) A (R (x, x) = RE(x))).

Let ¢’ be the FO’-sentence obtained by first appending the above sentences
as conjuncts to ¢ and then converting the resulting sentence to an equivalent
one built using A, —, and V only. It is now easy to verify that ¢’ has the the
desired properties that were listed earlier. In particular, ¢’ is of size O(s).

Next, we describe Scott’s reduction. Let ¢’ be a sentence of FO’. For each
subformula v of ¢’, we introduce a new relation symbol Q,; the arity of Q,,
is equal to the number of free variables in y, which means that it is 0, 1,
or 2. Intuitively, Q, represents the relation containing all tuples that satisfy
w. We now need to “axiomatize” this intuition. Thus, for each subformula
w(v), where v is the tuple of free variables in v, we introduce a sentence 6,
of the form

w(Q,(v) — 0,(v)),
where 6, is as follows:
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(1) If y is an atomic formula, then 6, is .

(2) If w is of the form o A B, then 0], is Q. (V) A Qp(v).

(3) If  is of the form -, then 6}, is ~Q, (v).

(4) If w is of the form Yva, then 6;, is YvQ,(v).

Note that in the first three clauses 6, has quantifier prefix V or ¥V, while in
the last one 6, is (equivalent to) a conjunction of a sentence of quantifier
prefix YV with a sentence of quantifier prefix V3. Let ®, be the conjunction
of the sentences 6,, for all subformulas y of ¢’. Finally, let ¢* be the sentence
Oy N Oy . It is not hard to verify that the following holds.

PropoSITION 3.1 ([53]). ¢’ is satisfiable if and only if ¢* is satisfiable. Fur-
thermore, for every finite model of ¢* there a finite model of ¢' of the same
cardinality.

Note that if ¢’ is of size s, then ¢* contains O(s) different relation symbols
and is of size O(s log(s)). Indeed ¢’ may contain up to O(s) subformulae,
so we need O(s) relation symbols. The extra log(s) factor in the size of ¢*
is due to the fact that we need a name (an index) of size O(log(s)) for these
different relation symbols.

Suppose now that we combine Scott’s reduction with the previous reduc-
tion, so that, given a FO*-sentence ¢, we apply Scott’s reduction to the FO*-
sentence ¢’ produced by the first reduction. Thus, given an FO*-sentence ¢,
we obtain in polynomial time a sentence ¢* with the following properties:

(1) ¢ is satisfiable if and only if ¢* is satisfiable. Furthermore, for every
finite model of ¢* there is a finite model of ¢ of the same cardinality.

(2) Every relation symbol occurring in ¢* has arity at most 2.

(3) If s is the size of ¢, then ¢* contains O(s) different relation symbols
and has size O(s log(s)).

(4) ¢ is a conjunction of sentences with quantifier prefixes of the form
YW or V4.

Scott observed that if the sentence ¢* is brought into prenex normal form,
it has a quantifier prefix of the form Vv3*. In view of this, he concluded
that the satisfiability problem for FO? is decidable, since it is reducible to
that of the Godel class. At that time it had not been detected yet that,
contrary to Godel’s claim, his decidability proof does not persist in the
presence of equality. Thus, Scott’s proof covers only FO? without equality.
As mentioned in the introduction, Mortimer [45] established that FO* with
equality has the finite model property, which implies that the satisfiability
problem for FO® with equality is decidable. Actually, Mortimer’s proof
shows that every satisfiable FO® sentence with equality has a finite model
whose size is doubly exponential in the size of the sentence. This yields, in
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turn, a nondeterministic doubly exponential algorithm for the satisfiability
problem for FO? with equality.

In what follows, we re-examine Scott’s reduction and demonstrate that it is
useful even for FO* with equality. The key idea is to refrain from converting
¢* to prenex formal form.

§4. The Scott class. Let ¢ be a sentence of FO with equality. We noted
above that the sentence ¢* in Proposition 3.1 can actually be written as a
conjunction of sentences with quantifier prefix V¥V or V3. We call the class of
such first-order sentences the Scot? class. Since a conjunction of VYV sentences
is equivalent to a single YV sentence, we may assume that every sentence 6 in
the Scott class is of the form

(Vx)(Vy)e /\ vx)(3y)fi(x, »),

where a(x, y) and Bi(x,y), 1 <i < m, are quantifier-free formulas. More-
over, we may assume that for every i < m it is the case that §;(x, y) = x # y,
since for every formula y(x, y) and every structure A with at least two ele-
ments

Al (Vx)3y)x(x,y) «— (vx)3y)(x # y A (x(x,x) V x(x,))).

The main result of this paper is that the satisfiability problem for the Scott
class is solvable in nondeterministic exponential time. This result is obtained
by establishing an exponential model property for the Scott class, that is, every
satisfiable sentence in the Scott class has a finite model whose cardinality
is at most exponential in the size of the sentence. Although this bound
improves the bound in Mortimer [45] by one exponential, it turns out that
the proof is actually simpler than Mortimer’s. Our construction requires
a delicate handling of the zypes that are realized by elements and pairs of
elements in models of sentences in the Scott class. We start with the relevant
definitions.

DEFINITION 4.1. Let o be a relational vocabulary.

e If x = (x;,...,x;) is a sequence of variables, then an k-type t(x) in
the variables X over o is a maximal consistent set of atomic and negated
atomic formulas (including equalities) over the vocabulary ¢ in the variables
x1,... ,X;. We often view a type as a quantifier-free formula over ¢ that is
the conjunction of its elements.

e Let #(xy,...,x;) be a k-type and let ¢(xy,. .., x;) be a quantifier-free
formula in the variables x|, . .. , x,. We say that ¢ satisfies ¢ if ¢ is true under
the truth assignment that assigns true to an atomic formula precisely when
it is a member of ¢.
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e Let A be a structure over the vocabulary ¢ and let a = (a,... ,a;) be
a sequence of elements from the universe 4 of A. The type t, of a on A is
the unique k-type t(zi, ... , zx) that the sequence a satisfies in A, under the
assignment z; — a;, 1 <i < k. We say that a sequence a realizes a type ¢ on
a structure A if ¢, = ¢. -

Suppose that we are attempting to construct a model of a sentence 6 in
the Scott class over a vocabulary . As every relation symbol in ¢ has arity
at most 2, to describe a o-structure A suffices to first define its universe
A and then specify the 1-types and 2-types realized by elements and pairs
of elements from A. Since # may contain equalities, it is conceivable that 6
asserts that certain 1-types are realized by at most one element. For example,
6 may assert (among other things) that (3y)P(y) A(¥x)(Vy)(P(x)AP(y) —
x = y), which implies that in every model of @ if ¢(z) is a 1-type containing
the atomic formula P(z), then t(z) is realized by at most one element.
Such elements are special and for this reason we reserve a special name for
them.

DErINITION 4.2. Let A be a structure and a an element of the universe A4
of A. We say that a is a king in A if a is the only element of A4 that realizes
the 1-type ¢, of a on A. -

In general, the potential presence of kings creates obstructions in con-
structing models of a sentence, as conflicts may arise when one attempts to
assign a 2-type to a pair of elements such that one of the elements in the pair
is a king. For example, consider the sentence

(vx)(3y)(t(y) A E(x, »)) A (Vx)(3Fp)(t(y) A =E(x, y)).

One can construct a model of this sentence by choosing for every element a
two different elements b, and b, of type ¢(y), and stipulating that E(a, b,)
and —E(a,b,) hold. This construction, however, can not be carried out
if the sentence contains additional conjuncts implying that the type ¢(y) is
realized by at most one element. It should also be pointed out that in certain
cases the presence of kings can be exploited to establish that the class under
consideration does not have the finite model property and, furthermore, that
the satisfiability problem for it is undecidable. Indeed, Goldfarb’s [23] proof
of the undecidability of the Godel class with equality involves an essential use
of kings. We now show that in the case of the Scott class the complications
caused by the kings can be overcome, provided the kings are treated with
“proper care and respect”.

THEOREM 4.3. Let 6 be a sentence in the Scott class. If 0 is satisfiable, then
it has a finite model with at most 352" elements, where s is the size of 0 and r
is the number of relation symbols occurring in 0.
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PROOF. As stated earlier, we may assume that the sentence 0 is of the form
(Vx)(¥y)a /\ (Vx)(3y)Bi(x, »),

where a(x, y) and B;(x, y), 1 < i < m, are quantifier-free formulas and for
every i < m it is the case that §;(x,y) = x # y. Let A be a model of 0,
let K be the set of all kings in A, and let P = {z, : a € A} be the set of all
1-types realized in A. We will show that 6 has a finite model of size at most

(m + 1)|K|+ 3m(|P| - |K]),

where |K | and | P| stand for the cardinalities of the sets K and P.
Since A = A7, (Vx)(3y)pi(x, y), there exist Skolem functions g; : 4 — 4,
1 <i < m, such that for every a € A we have that A = A", fi(a, g:(a)).

Let i
C=KU (U{gi(k) ke K})

be the royal court, that is the set consisting of the kings and the values
of the Skolem functions on the kings. Note that C may be empty, since
after all A may be a “republic” in which kings do not exist. In any case,
|C| < |K|+ m|K|= (m+ 1)|K|. Let Q be the set of all 1-types realized by
the kings on A, let » = |P| — |Q| = |P| — |K| be the cardinality of the set
P —Q,andlet¢,,...,t, be an enumeration of all members of P — Q. For
everyi < mandevery j <n,letd,;, e;, and f;; be distinct new objects that
are not members of the universe of A. We will construct a finite model B of
6 with universe the set B = C UD U E U F, where

D = {d;:1<i<m1<j<n}

E = {e;:1<i<m1<j<n},

F = {fi,:1<i<m,1<j<n}
The high-level description of the construction is as follows:

e The structure B will have exactly the same kings as A, since for all we
know 0 may logically imply that certain 1-types are realized by exactly one
element.

e To guarantee that B = (Vx)(Vy)a(x, y), we will make sure that every
pair of elements of B is assigned a 2-type realized by some pair of elements
inA.

e We also have to guarantee that every element of B has Skolem witnesses
for the formulas ;(x, y), 1 < i < m, that is, for every element b of B and
every i < m thereisan element b; of B such that B |= (b, b;). This turns out
to be the most subtle part of the construction. The kings will have members
of C as their Skolem witnesses, whereas members of C — K will have members
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of C or members of D as Skolem witnesses. For the remaining members of
B, Skolem witnesses will be provided in a circular manner: members of D
will have kings or members of E as Skolem witnesses; members of E will
have kings or members of F' as Skolem witnesses; finally, members of F will
have kings or members of D as Skolem witnesses. Moreover, we will make
sure that for every b in B if b; and b; are two of its Skolem witnesses and
neither b; nor b; is a member of C, then b; # b;. In turn, this will make
it possible to assign 2-types to pairs of elements of B without creating any
conflicts.

It is now time to spell out the formal details of the construction of B. For
this, we must describe the assignment of 1-types and 2-types on B.

e Every member of C is equipped with its 1-type in A, and every pair of
distinct elements of C is equipped with its 2-type in A. Consequently, the
substructure B|C of B generated by C coincides with the substructure A|C
of A generated by C.

e For every i < m and every j < n, each of the elements d;;, e;;, f; is
equipped with ¢; as its 1-type. Note that these two steps of the construction
ensure that A and B have exactly the same kings.

e The assignment of 2-types on pairs of elements of B will follow the
assignment of Skolem witnesses to every member b of B.

(1) If b is a king, then its Skolem witnesses are already provided by
members of the royal court C. Indeed, in this case we have that A|C =
A" (3y)B:(b, y) and, consequently, B = A", (3y)Bi(b, y).

(2) Let b be a member of C — K. For every i < m, consider the value
g:(b) of the Skolem function g; on b; thus, A |= B:(b, g:(b)). If g,(b) € C,
then B |= fi(b, gi()) and so g;(b) can serve as a Skolem witness of b for the
formula B (x, y). If g;(b) & C, then its type ¢, (5 is a member of P — Q and,
consequently, #,,») = t; for some j < n. In this case, we assign the element
d;; as the Skolem witness of b for the formula ;(x, y). Moreover, we equip
the pair (b, d;;) with the 2-type ¢, of the pair (b, g;(b)) on A. Note that
no conflicts arise in assigning 2-types, as none of the elements of D is used
twice as a Skolem witness of b, and the 2-type assigned is consistent with the
1-type of d,;.

(3) Let b be a member of D, which means that there is an i < m and a
Jj < nsuchthatb = d;;. Moreover, b realizes the 1-type ¢; on B. Let a be an
element of 4 such that the 1-type ¢, of a on Aisequal to ¢;. Foreveryi < m,
let g;(a) be the value of the Skolem function g; on a; thus, A = Bi(a, gi(a)).
We now distinguish two cases. If g;(a) is a king, then we assign g;(a) as the
Skolem witness of b for the formula f;(x, y). Moreover, we equip the pair
(b, gi(b)) with the 2-type ?(,,,(.) Of the pair (a,g;(a)) on A. Note that this
is consistent with the assignment of 1-types on B and that no conflicts arise,
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since so far the pair (b, g;(a)) has not been assigned a 2-type on B. If g;(a)
is not a king, then its type on A is a member of P — Q and, therefore, it is
equal to some type t;,, I < n. In this case, we assign the element ¢; as the
Skolem witness of b for the formula f;(x, y). Moreover, we equip the pair
(b, e;;) with the 2-type #(, ) Of the pair (a,g;(a)) on A. Note again that
this assignment is consistent with the assignments of 1-types on B and that
no conflicts arise in assigning 2-types, as none of the elements of E is used
twice as a Skolem witness of b.

(4) We repeat twice the previous step, first with the pair (E, F) in place of
the pair (D, E), and then with the pair (F, D) in place of the pair (E, F).

(5) Upon completion of the above steps, every element of B has been
assigned Skolem witnesses for the formulas f;(x, y),i < m. Itis conceivable,
however, that not every pair of elements of B has been assigned a 2-type.
If (b,b’) is such a pair, simply choose a pair (a,a’) of elements of 4 such
that the 1-type of a (respectively, of a’) on A coincides with the 1-type of b
(respectively, of 5') on B and equip the pair (b, b’) with the 2-type ¢, of
the pair (a,a’) on A. The construction of B is now complete.

Note that every 1-type and every 2-type realized in B is also realized
in A. Since A & (Vx)(Vy)a(x,y), it follows that B = (Vx)(Vy)a(x,y).
Moreover, B = A7 ,(Vx)(3y)Bi(x, y), since the construction guarantees
that every member of B has Skolem witnesses for the formulas g;(x, y),
i < m. Consequently, B is a model of 8. Moreover, as promised earlier, the
universe B of B has cardinality |B| = |C| + 3m(|P| — |K]|) < (m + 1)|K]| +
3m(|P| - |K|),and m < s. Note that |K| < |P| < 2", where r is the number
of relation symbols that occur in 6 and s is the size of §. Thus, |B| < 352".4

It is perhaps worth pointing out that if, instead of using 3m copies of
every 1-type in P — Q, we had attempted to build a model of 8 using 2m
copies of every 1-type in P — Q, then the construction would have met with
serious obstacles. Indeed, suppose we take C U D U E as the universe of B
and attempt to use members of E as Skolem witnesses for members of D,
and vice versa use members of D as Skolem witnesses for members of E.
Then conflicts may arise in assigning 2-types, as we may have an element d
of D and an element e of E such that d and e serve as Skolem witnesses of
each other, but different 2-types are required each time to satisfy some of the
formulas g;(x,y), i < m.

§5. The decision problem for FO’.

THEOREM 5.1. FO? has the exponential model property: there is a constant
¢ such that every satisfiable FO*-sentence ¢ has a model of cardinality at most
2, where s is the size of ¢.
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PrOOF. Given an FO’-sentence ¢, we can reduce it in polynomial time to
a sentence ¢* in the Scott class such that ¢ is satisfiable if and only if ¢* is
satisfiable. Moreover, for every finite model of ¢* there is a finite model of ¢
of the same cardinality. As shown earlier, if ¢ is of size s, then ¢* is of size
O(slogs) and has at most s different relation symbols. By Theorem 4.3, if
¢* has a model, then it has a model of cardinality O(s logs 2*) = 2°), A

DEerINITION 5.2. For any function ¢ from positive integers to positive inte-
gers, NTIME(¢(s)) is the class of all decision problems that can be solved
by a non-deterministic Turing machine in time #(ss ), where s is the size of the
input. We denote by NEXPTIME the union, taken over all polynomials p,
of the classes NTIME(27)).

A decision problem A is NEXPTIME-complete if it isin NEXPTIME and,
moreover, every problem in NEXPTIME can be reduced to A4 in polynomial
time. =

In what follows, the quantity s always denotes the size of the given input
sentence.

THEOREM 5.3. The satisfiability problem for the Scott class is in NTIME
(206/1e%)) - Further, the satisfiability problem for FO? is in NTIME(2°%)).

PRrOOF. Let ¢ be a sentence of length s in the Scott class (with equality)
with r distinct relation symbols. Since these relation symbols have distinct
names, coded over a fixed alphabet, it follows that r = O(s/logs). By
Theorem 4.3, to check whether ¢ is satisfiable, it suffices to guess a structure
A of cardinality at most O(s2’) = 2*/1°¢* (for some fixed constant c), and to
verify that A |= ¢. Given that the relation symbols in ¢ are at most binary, a
structure of this cardinality can be represented by a string of length 200/ g,
Finally it is obvious that the verification that A |= ¢ can be done in time
200/logs) This proves the claim for the Scott class.

The complexity bound for FO* follows immediately from the reduction to
the Scott class, as explained in Section 3. 5

A matching lower bound for the satisfiability problem of the Scott class
(even without equality) follows from a result of Fiirer [19], who, building
on earlier work by Lewis [42], established that the satisfiability problem for
V¥V AV3 sentences has a lower complexity bound of the form NTIME(24/10e+)
for some positive constant d. To prove this, Fiirer described a log-space
reduction that maps any instance x of a decision problem A in NTIME(2")
to an VWV A V3-sentence ¢ of size O(nlogn) (where n is the size of x) such
that ¢ is satisfiable if and only if x € 4. In fact, ¢ is without equality and
contains only monadic relation symbols.

This lower bound of course also applies to FO? and, together with Theo-
rem 5.3 implies the following completeness result.
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COROLLARY 5.4. The satisfiability problem for FO* with or without equality
is NEXPTIME-complete.

Note, however, that there is a small gap between upper and lower com-
plexity bounds for FO?, which comes from the increase of the formula length
from s to O(s log s) in the reduction of FO to the Scott class. It is not clear
whether this can be avoided, since FO*-sentences of length s may very well
have O(s) nested quantifiers. Thus, while we do know that the satisfiability
problem for FO? is in NTIME(2°"), we do not know whether it is hard
for NTIME(2°®), since this class is closed under linear reductions, but not
under polynomial reductions.?

We conclude by discussing the decision problem for certain extensions of
FO’. The exponential model property of Theorem 5.1 and the complexity
bound of Theorem 5.3 survive (with the same proof) if constant symbols
are allowed in the underlying vocabulary. In this case, the 1-types and 2-
types also reflect the relationship of the elements with the constants. The
constants themselves are of course kings. Taking this into account the proof
of Theorem 4.3 goes through without problems. Nevertheless, these results
do not extend to vocabularies containing function symbols of positive arity.
Indeed, it is known that already the satisfiability problems of FO' with
equality and only two unary function symbols, or of FO* without equality
and just one unary function symbol, are undecidable (see [6]).

It should also be pointed out that the class VWV A V3 does not have the
finite model property. Indeed, one can easily construct an infinity axiom (that
is, a satisfiable formula without a finite model) in this class by expressing,
for instance, that a binary relation R is a linear order without a maximal
element. Moreover, the satisfiability problem for the class VWV A V3 is
undecidable (see [41]). Thus, the Scott class is situated very close to the
boundary of decidability/undecidability, as well as to that of finite model
property/infinity axioms.

Finally, we note that the decidability result for FO? (but not the finite
model property) can be extended to FO* with counting quantifiers [27]. On
the other hand, for certain other natural extensions of FO* decidability fails
[26].
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