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Abstract
In Description Logics (DL) knowledge bases (KBs)
information is typically captured by crisp concept
descriptions. However, for many practical applica-
tions querying the KB by crisp concepts is too re-
strictive. A controlled way of gradually relaxing a
query concept can be achieved by the use of simi-
larity measures.
To this end we formalize the task of instance query
answering for crisp DL KBs using concepts relaxed
by similarity measures. We identify relevant prop-
erties for the similarity measure and give first re-
sults on a computation algorithm.

1 Introduction
Description Logics (DLs) are a family of knowledge repre-
sentation formalisms that have unambiguous semantics. A
particular DL is characterized by a set of concept construc-
tors, which allow to build complex concept descriptions. In-
tuitively, concept descriptions characterize categories from an
application domain. In addition, binary relations on the do-
main of interest can be captured by roles. These in turn can
be used in concept descriptions. The terminological knowl-
edge of an application domain is stored in the TBox, where
complex concept descriptions can be assigned to concept
names. Facts from the application domain and relations be-
tween them are represented by individuals in the ABox. TBox
and ABox together form the DL knowledge base (KB).

The formal semantics of DLs allow the definition of a
variety of reasoning services. The most prominent ones
are subsumption, i.e. to compute whether a sub-concept re-
lationship holds between two concept descriptions and in-
stance query answering, where for a given concept descrip-
tion all individuals from an ABox that are instances of the
concept are computed. These reasoning services are imple-
mented in highly optimized reasoning systems, see for ex-
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ample [Tsarkov and Horrocks, 2006; Kazakov et al., 2012;
Haarslev et al., 2012].

DLs of varying expressivity are the underlying logics for
the W3C standardized ontology language OWL 2 and its pro-
files [Motik et al., 2009]. This has led to an increased use of
DLs and DL reasoning systems in the recent years in many
application areas. By now there is a large collection of KBs
written in these languages. However, many applications need
to query the knowledge base in a less strict fashion.

In the application area of service matching OWL TBoxes
are employed to describe types of services. Here, a user re-
quest for a service specifies several conditions for the desired
service. These conditions are represented by a concept de-
scription. For such a concept description the OWL ABox
that contains the individual services is searched for a service
matching the specified request by employing instance query
answering. In cases where an exact match with the provided
requirements is not possible, a “feasible” alternative needs
to be retrieved from the ABox containing the services. This
means that those individuals from the ABox should be re-
trieved for the given query concept that fulfill the main con-
ditions, while for some conditions only a relaxed variant is
fulfilled.

A natural idea on how to relax the notion of instance
query answering is to simply employ fuzzy DLs and per-
form query answering on a fuzzy variant of the initial query
concept. However, on the one hand reasoning in fuzzy
DLs easily becomes undecidable [Borgwardt et al., 2012;
Borgwardt and Peñaloza, 2012; Cerami and Straccia, 2013]
and on the other hand depending on the user and on the
request, different ways of relaxing the query concept are
needed. For instance, for a request to a car rental company to
rent a particular car model in Beijing, it might be acceptable
to get an offer for a similar car model to be rented in Beijing,
instead of getting the offer to rent the requested car model
in London. Whereas for a handicapped user in a wheelchair
it might not be acceptable to relax the requested car model
from a two-door one to a four-door one. Here fuzzy concepts
would relax the initial concept in an unspecific and uniform
way. Ideally, relaxed instance query answering should allow
to

1. choose which aspects of the query concept can be re-
laxed and



2. choose the degree to how much these aspects can be re-
laxed.

The reasoning service addressed in this paper is a relaxed no-
tion of instance querying, such that it allows for a given query
concept the selective and gradual extension of the answer set
of individuals. We develop a formal definition of this reason-
ing service in Section 3.

Our approach for achieving selective and gradual extension
of the answer sets is to employ concept similarity measures to
relax the query concept. A concept similarity measure yields,
for a pair of concept descriptions, a value from the interval
[0, 1]—indicating how similar the concepts are. The goal is to
compute for a given concept C, a concept similarity measure
∼ and a degree t (t ∈ [0, 1]), a set of concept descriptions
such that each of these concepts is similar to C by a degree
of at least t, if measured by ∼, and finding all their instances.

For DLs there is whole range of similarity measures de-
fined (see for example [Borgida et al., 2005; d’Amato et
al., 2005; Lehmann and Turhan, 2012]), which could be em-
ployed for this task. In particular the similarity measures gen-
erated by the framework described in [Lehmann and Turhan,
2012] allow users to specify which part of the vocabulary
used in their knowledge base is to be regarded more impor-
tant when it comes to the assessment of similarity of concepts.
Thus, these measures naturally allow to select which aspect
of the query concept to relax.

The core reasoning problem encountered in our algorithm
for relaxed instance query answering is to compute for an in-
dividual a and the query concept description C a concept de-
scription C ′ that mimics C, i.e. a concept description that is
‘sufficiently similar’ to C w.r.t. the used similarity measure∼
and the degree t.

We propose in this paper an algorithm to compute the
above mentioned reasoning service of relaxed instance query
answering in the lightweight DL EL. For instance, for the
Gene ontology [Gene Ontology Consortium, 2000], which is
written in EL and is used (among other things) to solve the
task of finding genes that realize similar functionality [Lord
et al., 2003], a proliferation of different similarity measures
has been defined [Lord et al., 2003; Schlicker et al., 2006;
Mistry and Pavlidis, 2008; Alvarez and Yan, 2011]. In prin-
ciple these measures could be used in our approach to query
ABoxes. We identify properties of concept similarity mea-
sures that allow to compute relaxed instances of concepts.

The paper is organized as follows: after introducing basic
notions on DLs and concept similarity measures in Section 2,
we develop a formal notion of relaxed instances in Section 3.
In order to compute relaxed instances it is necessary, as we
shall see, to compute mimics of a concept and an individual.
An way of finding a mimic and its application to construct
an algorithm that computes all relaxed instances of a query
concept is provided in Section 4. As customary, the paper
ends with conclusions and future work.

2 Preliminaries
In this section we introduce the basic notions of Description
Logics and similarity measures between concepts. For a thor-
ough introduction to Description Logics, see [Baader et al.,

Syntax Semantics

top concept > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential
restriction

∃r.C
(∃r.C)I = {d ∈ ∆I |
∃e.(d, e) ∈ rI ∧ e ∈ CI}

concept
definition A ≡ C AI = CI

concept
assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 1: Concept constructors, TBox axioms and ABox as-
sertions for EL.

2003]. While we try to formalize the notion of relaxed in-
stances of a concept w.r.t. a similarity measure independently
from a specific DL, Section 4 will show how instance query-
ing for relaxed concepts can be computed in the restricted DL
EL.

Let NC , NR, and NI be non-empty, disjoint sets of concept
names, role names, and individual names. A concept descrip-
tion (or short concept) is constructed from concept names by
applying concept constructors such as conjunction, negation,
quantification, or the top concept >. In particular, EL only
admits the concept constructors conjunctions, existential re-
strictions and the top concept, as seen in Table 1. We denote
the set of allL-concept descriptions constructed is such a way
by C(L).

For example, using the following EL-concept description,
one can describe a service which currently waits for requests,
but runs on an overloaded server:

Service u ∃has-state.WaitingForRequest
u ∃runs-on(Server u ∃has-condition.Overloaded)

The semantics of concept descriptions is defined by means
of interpretations I = (∆I , ·I) consisting of a non-empty
domain ∆I and an interpretation function ·I that assigns bi-
nary relations on ∆I to role names, subsets of ∆I to concept
names, and elements of ∆I to individual names. The inter-
pretation function can be recursively extended to EL-concept
descriptions as shown in Table 1.

An EL-knowledge base (KB) K = (T ,A) consists of an
EL-TBox T , which captures the terminological knowledge,
and an EL-ABox A, which contains the assertions about spe-
cific individual. In this paper we only consider unfoldable
TBoxes, i.e., sets of concept definitions such that each con-
cept name occurs at most once on the left-hand side of a con-
cept definition and there are no cyclic dependencies between
defined concepts. An ABox is a set of concept and role asser-
tions. The semantics of interpretations is extended to concept
definitions and assertions as shown in Table 1. We say that
an interpretation I is a model of a TBox T (ABox A), if it
satisfies all concept definition in T (assertions in A). I is a
model of a knowledge base K = (T ,A) if it is a model for
both T and A.

There exists a number of inferences for DLs. Three com-



monly used inferences are concept subsumption, concept
equivalence and instance checking. Concept subsumption
tests if a concept C is subsumed by a concept D w.r.t. a TBox
T (denoted C vT D), i.e. CI ⊆ DI for all models I of
T . Similarly, two concepts C and D are equivalent w.r.t. T
(denoted C ≡T D), if C vT D and D vT C. Finally, an
individual a is an instance of a query concept description C
w.r.t. a KB K, if aI ∈ CI for all models I of K.

Besides these standard reasoning tasks, other inferences
have been developed for certain applications. The most spe-
cific concept, first introduced in [Nebel, 1990], is such a non-
standard inference. This inference computes a concept de-
scription that describes an individual a from the knowledge
base as exact as it is possible in the used DL.
Definition 1. Let L be a DL and K = (T ,A) be an L-KB.
The concept description C is the most specific concept of an
individual a w.r.t. K (denoted msc(a)) iff
• a is an instance of C, and
• for all concept descriptions D ∈ C(L), if a is an instance

of D, then C vT D.

Similarity measures. For a DL L, a concept similarity
measure ∼: C(L) × C(L) → [0, 1] is a function that assigns
a similarity value C ∼ D to each pair C,D of L-concept de-
scriptions. A value C ∼ D = 0 means that C and D are
totally dissimilar, while a value C ∼ D = 1 means that C
and D are totally similar.

A collection of properties for concept similarity measures
is given in [Lehmann and Turhan, 2012]. In particular, a sim-
ilarity measure ∼ for L-concept descriptions is:

1. symmetric iff C ∼ D = D ∼ C for all C,D ∈ C(L);
2. fulfilling the triangle inequality iff

1 + D ∼ E ≥ D ∼ C + C ∼ E

for all C,D,E ∈ C(L);
3. equivalence invariant iff for all C,D,E ∈ C(L) with

C ≡ D it holds that C ∼ E = D ∼ E;
4. equivalence closed iff C ∼ D = 1⇐⇒ C ≡ D.
In this paper, we only consider symmetric similarity mea-

sures, since they better capture our intuitive understanding of
similarity. However, all definitions and results can easily be
extended to asymmetric similarity measures. Furthermore,
the triangle inequality was found to be hard to achieve for
similarity measures for even restricted DLs like EL, and thus
will not be discussed here.

Observe that the property ‘equivalence closed’ interacts
with relaxed instances of a query concept C in the following
way: clearly, if we want only relaxed instances with a similar-
ity of exactly 1, then equivalence closed similarity measures
should result in exactly the instances of C, while similarity
measures that are not equivalence closed might result in ad-
ditional individuals.

Most previously proposed concept similarity measures can
be divided into two groups: structural measures, which are
defined using the syntax of the concepts, and interpretation
based measures, which are defined using interpretations and

cardinality instead of the syntax. We later describe a result
for structural similarity measures, therefore we will describe
these in more detail: Basically, a similarity measure ∼ on L-
concepts descriptions is called structural, if it computes the
similarity of two concepts C and D recursively by computing
the similarity of concept names in C and D and the similarity
of the existential restrictions occurring in C and D and com-
bining these values monotonically to the overall similarity.
For structural similarity measures to be equivalence invari-
ant, the concepts often need to be transformed into a normal
form before comparing them [Lehmann and Turhan, 2012].
For a similarity measure ∼, we call the normal form used for
the computation of the similarity the ∼-normal form.

3 Relaxed Instances
In this section we introduce the main reasoning problems that
we want to solve, as well as a first approach for obtaining a
solution.

Our main goal is to generalize query answering to allow
for more relaxed solutions. Intuitively, given a concept C, we
are interested in finding all the certain instances of C, but also
in finding those individuals that are close to being instances
of C; we call these individuals the relaxed instances of C. To
emphasize the contrast, we some times call the instances of
C certain instances of C.

Before we can try to compute these relaxed instances, we
need to formalize the notion of relaxed instances of a query
concept. In principle there are are many ways to do so and
we discuss next some of these options.

One natural approach would be to try to decide which indi-
viduals are similar to any of the certain instances of C. How-
ever, this method would require the definition of a similarity
measure on the elements of the domain, rather than on the
concepts. Such a DL with a similarity measure on the domain
elements was introduced in [Lutz et al., 2003]. However, for
this DL the similarity measure (or more precisely, a distance
metric) is part of the interpretation and cannot be adjusted to
different user needs.

A different idea that has been proposed is to simply gen-
eralize the concept C by considering named concepts that
subsume C. Thus for a named concept C, consider its di-
rect subsumers in the concept hierarchy. This idea is easy
to implement and understand, but provides only very rough
approximations to the concept C determined by the set of
concept names only. Moreover, users have no control on the
quality of the approximation provided; in fact even the di-
rect subsumers might describe a concept that is already very
dissimilar to C.

We follow a different approach, in which we ask for the
instances of those concepts that are similar to C. We can then
control how inclusive the relaxed instance solutions should
be, by adjusting the degree t of similarity allowed.

Definition 2 (relaxed instance). Let L be some DL, C be
an L-concept, ∼ a similarity measure over L-concepts, and
t ∈ (0, 1]. The individual a ∈ NI is a relaxed instance of C
w.r.t. theL-knowledge baseK,∼ and the threshold t, denoted
a ∈∼t C, iff there exists a concept description X ∈ C(L) such
that C ∼ X ≥ t and a ∈ XI for all models I of K.
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Figure 1: Relaxed instances w.r.t. two different similarity
measures. Darker colors represent the relaxed instances of
C w.r.t. higher degrees t.

For brevity, we will denote as Relax∼t (C) the set of all re-
laxed instances of C w.r.t. K, ∼ and t. Clearly, the elements
of Relax∼t (C) depend strongly on the value of t, but also on
the similarity measure ∼ chosen, as shown in Figure 1. For
a fixed similarity measure ∼, if t ≤ t′, then it holds that
Relax∼t′ (C) ⊆ Relax∼t (C). In the figure, the central circle
represents the interpretation of the concept C. The other lines
show the interpretation of Relax∼t (C) with darker lines grad-
ually representing large values t. We use two different kinds
of lines (continuous vs. dashed) to represent two different
similarity measures, that relax the concepts based on differ-
ent features. As can be seen, the sets obtained can greatly
differ from each other.

As mentioned before, our goal is to find all the instances in
Relax∼t (C). Following Definition 2, this task could be per-
formed by first computing all concepts X that are similar to
C with degree at least t, and then obtaining all the instances
of these concepts X; in symbols,

Relax∼t (C) =
⋃

C∼X≥t

{a | a is an instance of X}.

However, this approach suffers from two main drawbacks.
First, the set of all concepts that are similar to C with degree
at least t might be infinite, thus requiring an infinite number
of queries to obtain Relax∼t (C), even though this set contains
only finitely many individuals. Second, it is not known how
to compute the similar concepts X . Similarity measures tell
us only how similar two given concepts are, but not how to
build a concept that is similar to another with at least some
given degree.

To avoid these issues, we consider a different reasoning
problem, that considers the computation of a concept that has
a given individual a as an instance and resembles C most. We
call this the mimic of C w.r.t. a.

Definition 3 (mimic). Let L be a DL, K be an L-knowledge
base, a ∈ NI be an individual name, C be an L-concept
description, and ∼ be a similarity measure. An L-concept
D is called a mimic of C w.r.t. a, denoted M(C, a), iff the
following two conditions hold:

• a is an instance of D, i.e., aI ∈ DI for all models I of
K, and

• for allL-concept descriptions E holds, if a is an instance
of E, then C ∼ D ≥ C ∼ E.

CI = M(C, a)I

msc(a)a

msc(b)
b

M(C, b)I

Figure 2: Two individuals, their most specific concepts (dot-
ted), and the mimics of a concept C w.r.t. the individuals
(dashed).

Intuitively, a mimic of C w.r.t. a is a concept that is as sim-
ilar to C as possible, while still having a as an instance. As
for relaxed instances, the mimic strongly depends on the sim-
ilarity measure chosen. Figure 2 depicts the idea of mimics.
In the figure, a and b are two named individuals. The former
is an instance of C while the latter is not. The dotted lines
depict their most specific concepts. Since a is an instance of
C, C is also a mimic of C w.r.t. a: C ∼ C = 1. The dashed
line depicts a mimic of C w.r.t. b. Notice that this mimic must
contain the msc of b, but need not be a subsumer of C.

We must point out that the mimic of C w.r.t. an individual
a need not be unique, even modulo concept equivalence. For
example, let K be a knowledge base consisting of the empty
TBox T and the ABox A = {A u B(a)}, and ∼ be a sim-
ilarity measure with A ∼ C = 0.5, B ∼ C = 0.5 and
(A u B) ∼ C = max{A ∼ C,B ∼ C} = 0.5. Then A,
B, and A u B, are all mimics of C w.r.t. a, as they all have
a similarity value of 0.5 to C. In fact, there can be infinitely
many such mimics for a given concept C and individual a.
As we will see, it suffices to compute one of them.

Using mimics, we can compute the relaxed instances of a
concept. The idea is to compute, for each individual a ap-
pearing in the knowledge base K, the mimic of C w.r.t. a. If
this mimic has similarity at least t with C, then a is a relaxed
instance of C; otherwise, it cannot be a relaxed instance, as
no concept can have a greater similarity degree with C while
still containing a. This is formalized in the following propo-
sition. The proof is a simple consequence of the arguments
given above.

Proposition 4. LetK be a knowledge base, a be an individual
occurring inK, C be a concept description,∼ be a similarity
measure and t ∈ [0, 1]. Then a ∈ Relax∼t (C) iff there is a
mimic D of C w.r.t. individual a such that C ∼ D ≥ t.

In the next section we will study the problem of computing
a mimic for a given concept C w.r.t. an individual a. Since
all mimics must have the same degree of similarity w.r.t. C,
a simple similarity computation provides us with a decision
whether a is a relaxed instance of C or not, up to degree t.
As computing a mimic may be an expensive task, we also
provide an optimization criterion: if a mimic D of C w.r.t. a
is similar to C to degree at least t, then all certain instances
of D must also be relaxed instances of C, and hence there is
no need of computing their corresponding mimics.



4 Computing Mimics in EL
In general there are infinitely many concepts, for which an
individual a is an instance of, and thus enumerating them and
computing the similarity to C to find the mimic is not a feasi-
ble option. However, under some circumstances we can limit
the number of concepts that need to be tested in order to find
a mimic.

Recall that the notion of a mimic combines a property that
is based on the semantics (it must have a as an instance) and
a syntactic property (it must be similar to C). The semantic
property gives us a starting point on how to find a mimic. A
mimic D of C w.r.t. a must always have a as an instance, and
hence, by definition of the msc, msc(a) vT D holds. For
equivalence invariant similarity measures the idea is to use
the msc(a) as a lower bound for the mimic guaranteeing the
semantic property, and to only consider concept descriptions
that can be obtained from syntactic manipulations of msc(a)
that result in a generalized concept, i.e., by removing some
concept names or existential restrictions.
Definition 5 (generalized concept). Let C be a concept de-
scription of the form

C =
d

i∈I Ai u
d

j∈J ∃rj .Ej ,

with Ai ∈ NC for all i ∈ I , and rj ∈ NR, Ej is a concept
description for all j ∈ J . Then a concept description D is a
generalized concept of C iff it has the form

D =
d

i∈I′ Ai u
d

j∈J′ ∃rj .E′j
with I ′ ⊆ I , J ′ ⊆ J and E′j is a generalized concept of Ej

for j ∈ J ′.
This idea, however, only works if the msc is given in a

particular syntactic form. It needs to be fully expanded.
Definition 6 (fully expanded concept). Let T be an EL-
TBox. A concept description C is fully expanded w.r.t. T
iff for all concept definitions D = E ∈ T with C vT D we
have that E is a generalized concept of C.

The idea is that C contains all its subsumers explicitly as
sub-concept descriptions. Now, we can show that the mimic
of C w.r.t. a must be a generalized concept of the fully ex-
panded most specific concept of a.
Lemma 7. Let K = (T ,A) be an EL-knowledge base, a be
an individual from A, C be an EL-concept description, and
∼ be an equivalence invariant similarity measure. Let further
E = msc(a) be the fully expanded most specific concept of a.
Then there is a mimic D = M(C, a) of C w.r.t. a and K that
is a generalized concept of E.

Proof. We show that any concept F which has a as an in-
stance must be equivalent to a generalized concept of the fully
expanded msc. Since the mimic of C w.r.t. a has a as an in-
stance and ∼ is equivalence invariant, the lemma follows.

Let F be a concept description with aI ∈ F I for all mod-
els I of K. Then E vK F by definition of the msc. Since
E is fully expanded and contains all its subsumers explicitly,
any part of the concept description F must also be part of the
concept description E. Thus F is a generalized concept of
E.

In general, the msc may contain a chain of infinitely nested
existential restrictions for cyclic ABoxes, and hence describ-
ing it as a concept would require infinite size. Then there are
still infinitely many generalized concepts (of finite size) that
need to be checked to find a mimic. This means that Lemma 7
does not always provide a solution to the problem. However,
the query concept C (in ∼-normal form) has always a finite
role-depth, and most structural similarity measures used in
practice compute the similarity recursively between concepts
at the same role-depth. Therefore, for these similarity mea-
sures, it is possible to limit the role-depth of the most specific
concept and still get the same result.
Definition 8. Let K be an EL-KB. By rd(C) we denote the
role-depth of a concept C, i.e. the maximal number of nested
quantifiers.

The EL-concept description C is the role-depth bounded
most specific concept (denoted k-msc(a)) of an individual a
w.r.t. K and the role-depth bound k iff
• rd(C) ≤ k,
• aI ∈ CI for all models I of K, and
• for all EL-concepts D ∈ C(L) with rd(D) ≤ k and all
aI ∈ DI for all models I of K it holds that C vT D.

The role-depth bounded msc is a commonly used approx-
imation of the msc, since it always exists and is unique.
An algorithm to compute the k-msc in the EL-family, even
w.r.t. general TBoxes, has been introduced in [Peñaloza and
Turhan, 2011] and [Ecke et al., 2013]. Using this, we can
now show that for structural similarity measures we can find
the mimic always as a generalized concept of the role-depth
bounded msc.
Lemma 9. Let K = (T ,A) be an EL-knowledge base, a be
an individual from A, C be an EL-concept description in ∼-
normal form, and ∼ be a structural, equivalence invariant
similarity measure with the following property:

X ∼
d

i∈I Ai ≥ X u ∃r.B ∼
d

i∈I Ai. (1)

Let further k = rd(C) and E = k-msc(a) be the fully ex-
panded role-depth bounded most specific concept of a. Then
there is a mimic D = M(C, a) of C w.r.t. a that is a general-
ized concept of E.

Proof. By Lemma 7 we know that there exists a mimic F of
C w.r.t. a that is a generalized concept of the (possibly infi-
nite) msc(a). Since E is the fully expanded k-msc of a, F
must also be a generalized concept of E up to role-depth k
(but of course, it may contain additional existential restric-
tions which increase the role-depth of F ). We show by in-
duction on k, that there is a generalized concept F ′ of E with
F ′ ∼ C ≥ F ∼ C. This will imply that F ′ is a mimic of C
w.r.t. a, which proves the lemma.

For the case k = 0, C =
d

i∈I Ai and E =
d

j∈J Bj

are conjunctions of concept names and since F a generalized
concept of E up to role-depth k = 0, we know that F is of
the form F =

d
j∈J′ Bj u

d
h∈H ∃rh.Fh with J ′ ⊆ J . But

then property (1) yields for F ′ =
d

j∈J′ Bj :

F ′ ∼ C ≥ F ′ u
d

h∈H ∃rh.Fh ∼ C = F ∼ C.



Procedure relaxed-instance?(a,C,K,∼, t)
Input: a: individual in K; C: EL-concept description;

K: EL-knowledge base; ∼: similarity measure;
t: similarity degree;

Output: whether a ∈∼t C w.r.t. K
1: k := rd(C)
2: E := k-msc(a) w.r.t. K
3: guess a generalized concept F of E
4: if F ∼ C ≥ t then
5: return true
6: else
7: return false

Figure 3: Computation algorithm for relaxed instances in EL.

For the case k > 0, C =
d

i∈I Ai u
d

h∈H ∃sh.Ch and
E =

d
j∈J Bj u

d
l∈L ∃rl.El are conjunctions of concept

names and existential restrictions with rd(Ch), rd(El) ≤ k−1
for h ∈ H , l ∈ L. Once again, since F is a general-
ized concept of E up to role-depth k, it must be of the form
F =

d
j∈J′ Bj u

d
l∈L′ ∃rl.Fl with J ′ ⊆ J , L′ ⊆ L and

each Fl is a generalized concept of El up to role-depth k−1.
But then, the induction hypothesis yields for each h ∈ H and
l ∈ L′ that F ′l ∼ Ch ≥ Fl ∼ Ch for generalized concepts
F ′l of El. Then also F ′ =

d
j∈J′ Bj u

d
l∈L′ ∃rl.F ′l is a gen-

eralized concept of E and since the similarity measure ∼ is
structural, this yields: F ′ ∼ C ≥ F ∼ C.

We have now identified some constraints on the similarity
measure such that we can always find the mimic of C w.r.t.
a from a finite set of concept descriptions: the generalized
concepts of the fully expanded role-depth bounded msc of
the individual a.

Instead of computing the mimic D = M(C, a) of C w.r.t.
a and testing whether the similarity between the C and D
is at least t, it is enough to find any concept D′ with a as
an instance and C ∼ D′ ≥ t to show that a is a relaxed
instance of C; Such a non-deterministic algorithm that, given
an EL-KB K, an individual a, an EL-concept description C,
a similarity measure ∼, and a similarity degree t, computes
whether a is a relaxed instance of C w.r.t. ∼ and t, is given
in Figure 3. The algorithm works by computing the k-msc of
a with k = rd(C) and then guessing a generalized concept F
of E with similarity F ∼ C ≥ t, if such a concept exists.

Corollary 10. Let K = (T ,A) be an EL-knowledge base,
C be an EL concept in ∼-normal form, a be an individual
in K, ∼ be a structural equivalence invariant similarity mea-
sure fulfilling Property 1 from Lemma 9 and t ∈ [0, 1]. Then
relaxed-instance?(a,C,K,∼, t) computes whether a ∈∼t C
w.r.t. K.

Proof. Lemma 9 shows that a mimic of C w.r.t. a is a gener-
alized concept of E = k-msc(a) for k = rd(C). Thus, if the
algorithm returns false, we know that no generalized concept
F exists with C ∼ F ≥ t, and in particular also the mimic
of C w.r.t. a must have a similarity of less than t to C. Thus
no concept that has a as an instance is similar enough to C
and thus a 6∈∼t C. If the algorithm returns true, the guessed

concept F shows a ∈∼t C, since a is an instance of F and
F ∼ C ≥ t.

Guessing a generalized concept F of a concept description
E can be done in time linear to size ‖E‖ of E by recursively
guessing for each concept name and each existential restric-
tion in E whether they should occur in F or not. However, the
size of E = k-msc(a) can be exponential in k and polyno-
mial in ‖K‖ [Peñaloza and Turhan, 2011]. Since k = rd(C)
is bounded linearly by ‖C‖, the algorithm runs in NEXP-time
(provided that ∼ can be computed in NEXP-time). However,
the algorithm runs in NP-time in ‖K‖ (provided that ∼ can
be computed in NP), and since C is an input concept, its role-
depth can be assumed to be rather low. Hence, we conjecture
that the exponential blow-up of the msc usually plays only a
minor role in practical applications.

To obtain a deterministic algorithm, the mimic of C w.r.t.
a can be computed by enumerating all generalized concepts
of k-msc(a) and taking one with the maximal similarity to
C. Of course, there are a few optimizations possible: if the
individual a belongs to C, we can directly return true, since
the mimic will always be C itself. If we find a generalized
concept F with C ∼ F ≥ t, we can stop to search for even
more similar concepts and return true. And finally, if we find
a mimic D for an individual a with C ∼ D ≥ t, we know that
all other instances of D besides a will be relaxed instances of
C as well, without needing to compute their mimics.

5 Conclusions
In this paper we have studied a new inference service for de-
scription logics, which consists in computing the relaxed in-
stances of a given query concept C w.r.t. a similarity mea-
sure ∼ and a similarity degree t. This problem is relevant
to the field of artificial intelligence in general, and to knowl-
edge representation and reasoning in particular, as it provides
a formal and unambiguous method for computing answers
for a relaxed notion of instance query. Thus it is useful for
ontology-based applications that need to obtain answers that
fit the query criteria only to a certain degree.

The inference has two main degrees of freedom: in the
choice of the similarity measure, and in the degree of relax-
ation of the concept. The similarity degree t allows the user to
tune how strict or relaxed the answers provided are: a degree
closer to 1 will yield only a few additional individuals that do
not belong to C, while relaxing to a level closer to 0 yields
almost all individuals in the ontology as relaxed instances.
The similarity measure provides also criteria on how the re-
laxed instances are obtained. Intuitively, different similarity
measures yield different weights on specific criteria. For ex-
ample, one could require that small changes inside existential
restrictions produce a high level of dissimilarity.

As a step for computing the relaxed instances of a concept
C, we introduced the problem of finding a mimic of the query
concept C w.r.t. a given individual a. Such a mimic is a con-
cept D that contains a as instance, and has the highest simi-
larity possible to C; i.e., it is a concept that tries to imitate C
while containing a. Computing mimics w.r.t. all individuals
appearing in an ontology provides a method for finding the
relaxed instances of C.



The problem of finding a mimic is non-trivial. We have
provided an algorithm capable of finding such a mimic, based
on the msc of an individual a for certain structural similarity
measures. While this computation is expensive, some obvi-
ous optimizations can be used to reduce the number of times
these mimics are constructed.

As future work, we plan to expand on the two main in-
ference problems described in this paper. First, we intend to
improve the algorithms that compute the mimics. On the one
hand, we will try to find one such mimic efficiently. On the
other, it would also be beneficial to compute the most general
mimic, if it exists; this concept would have the most pos-
sible instances, and hence would be useful as an optimiza-
tion approach. Second, we will try to find tight complexity
bounds on the problems of computing relaxed instances and
finding mimics for a given concept. Third, we plan to obtain a
better understanding on the properties of similarity measures
that can impact (positively or negatively) on the complexity
and run-time of solving these problems. As we have men-
tioned before, both inferences depend strongly on the simi-
larity measure chosen. However, we do not know precisely
which measures would allow for better results, be it in terms
of execution time, or in terms of precision and fine-grained
tuning.

References
[Alvarez and Yan, 2011] M. A. Alvarez and C. Yan. A

graph-based semantic similarity measure for the gene on-
tology. J. Bioinformatics and Computational Biology,
9(6):681–695, 2011.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P.F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[Borgida et al., 2005] A. Borgida, T. Walsh, and H. Hirsh.
Towards measuring similarity in description logics. In
Proc. of the 2005 Description Logic Workshop (DL 2005),
volume 147 of CEUR Workshop Proceedings, 2005.

[Borgwardt and Peñaloza, 2012] S. Borgwardt and R. Peña-
loza. Undecidability of fuzzy description logics. In Proc.
of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-12), pages 232–242.
AAAI Press, 2012.

[Borgwardt et al., 2012] S. Borgwardt, F. Distel, and
R. Peñaloza. How fuzzy is my fuzzy description logic?
volume 7364 of Lecture Notes In Artificial Intelligence,
pages 82–96. Springer-Verlag, 2012.

[Cerami and Straccia, 2013] M. Cerami and U. Straccia. On
the (un)decidability of fuzzy description logics under
lukasiewicz t-norm. Inf. Sci., 227:1–21, 2013.

[d’Amato et al., 2005] C. d’Amato, N. Fanizzi, and F. Es-
posito. A semantic similarity measure for expressive de-
scription logics. In Proc. of Convegno Italiano di Logica
Computazionale, CILC05, 2005.

[Ecke et al., 2013] A. Ecke, R. Peñaloza, and A.-Y. Turhan.
Computing role-depth bounded generalizations in the de-
scription logic ELOR. In Proceedings of the 36th German

Conference on Artificial Intelligence (KI 2013), volume
8077 of Lecture Notes in Artificial Intelligence, Koblenz,
Germany, 2013. To appear.

[Gene Ontology Consortium, 2000] The Gene Ontology
Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[Haarslev et al., 2012] V. Haarslev, K. Hidde, R. Möller, and
M. Wessel. The RacerPro knowledge representation and
reasoning system. Semantic Web Journal, 3(3):267–277,
2012.

[Kazakov et al., 2012] Y. Kazakov, M. Krötzsch, and
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